Suppr超能文献

抗砷ATP酶的结构:一种重金属抗性泵的催化亚基。

Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump.

作者信息

Zhou T, Radaev S, Rosen B P, Gatti D L

机构信息

Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Avenue, Detroit, MI 48201, USA.

出版信息

EMBO J. 2000 Sep 1;19(17):4838-45. doi: 10.1093/emboj/19.17.4838.

Abstract

Active extrusion is a common mechanism underlying detoxification of heavy metals, drugs and antibiotics in bacteria, protozoa and mammals. In Escherichia coli, the ArsAB pump provides resistance to arsenite and antimonite. This pump consists of a soluble ATPase (ArsA) and a membrane channel (ArsB). ArsA contains two nucleotide-binding sites (NBSs) and a binding site for arsenic or antimony. Binding of metalloids stimulates ATPase activity. The crystal structure of ArsA reveals that both NBSs and the metal-binding site are located at the interface between two homologous domains. A short stretch of residues connecting the metal-binding site to the NBSs provides a signal transduction pathway that conveys information on metal occupancy to the ATP hydrolysis sites. Based on these structural features, we propose that the metal-binding site is involved directly in the process of vectorial translocation of arsenite or antimonite across the membrane. The relative positions of the NBS and the inferred mechanism of allosteric activation of ArsA provide a useful model for the interaction of the catalytic domains in other transport ATPases.

摘要

主动外排是细菌、原生动物和哺乳动物中重金属、药物及抗生素解毒的常见机制。在大肠杆菌中,ArsAB泵赋予细胞对亚砷酸盐和亚锑酸盐的抗性。该泵由一个可溶性ATP酶(ArsA)和一个膜通道(ArsB)组成。ArsA含有两个核苷酸结合位点(NBSs)以及一个砷或锑的结合位点。类金属的结合会刺激ATP酶活性。ArsA的晶体结构表明,两个NBSs以及金属结合位点均位于两个同源结构域之间的界面处。一段连接金属结合位点与NBSs的短残基序列构成了一条信号转导通路,该通路将金属占据情况的信息传递至ATP水解位点。基于这些结构特征,我们提出金属结合位点直接参与亚砷酸盐或亚锑酸盐跨膜的向量转运过程。NBS的相对位置以及ArsA变构激活的推测机制为其他转运ATP酶中催化结构域的相互作用提供了一个有用的模型。

相似文献

1
Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump.
EMBO J. 2000 Sep 1;19(17):4838-45. doi: 10.1093/emboj/19.17.4838.
3
Mechanism of the ArsA ATPase.
Biochim Biophys Acta. 1999 Dec 6;1461(2):207-15. doi: 10.1016/s0005-2736(99)00159-5.
4
Antimonite regulation of the ATPase activity of ArsA, the catalytic subunit of the arsenical pump.
Biochem J. 2001 Dec 15;360(Pt 3):589-97. doi: 10.1042/0264-6021:3600589.
5
Cys-113 and Cys-422 form a high affinity metalloid binding site in the ArsA ATPase.
J Biol Chem. 2006 Apr 14;281(15):9925-34. doi: 10.1074/jbc.M600125200. Epub 2006 Feb 8.
6
A kinetic model for the action of a resistance efflux pump.
J Biol Chem. 2001 Mar 2;276(9):6378-91. doi: 10.1074/jbc.M008105200. Epub 2000 Nov 28.
8
Role of conserved histidine residues in metalloactivation of the ArsA ATPase.
Biometals. 2000 Dec;13(4):281-8. doi: 10.1023/a:1009200215328.
10
Interaction of the catalytic and the membrane subunits of an oxyanion-translocating ATPase.
Arch Biochem Biophys. 1994 Jun;311(2):418-24. doi: 10.1006/abbi.1994.1256.

引用本文的文献

1
Temporal dynamics in a red alga dominated geothermal feature in Yellowstone National Park.
ISME Commun. 2024 Dec 3;4(1):ycae151. doi: 10.1093/ismeco/ycae151. eCollection 2024 Jan.
3
Elucidating arsenic-bound proteins in the protein data bank: data mining and amino acid cross-validation through Raman spectroscopy.
RSC Adv. 2023 Dec 12;13(51):36261-36279. doi: 10.1039/d3ra05987a. eCollection 2023 Dec 8.
4
Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis.
J Biol Chem. 2023 Jun;299(6):104752. doi: 10.1016/j.jbc.2023.104752. Epub 2023 Apr 24.
5
Re-sensitization of carrying multidrug resistant bacteria to colistin by silver.
Proc Natl Acad Sci U S A. 2022 Mar 15;119(11):e2119417119. doi: 10.1073/pnas.2119417119. Epub 2022 Mar 9.
6
The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health.
Geohealth. 2021 Oct 1;5(10):e2020GH000380. doi: 10.1029/2020GH000380. eCollection 2021 Oct.
7
Arsenic trioxide targets Hsp60, triggering degradation of p53 and survivin.
Chem Sci. 2021 Jul 17;12(32):10893-10900. doi: 10.1039/d1sc03119h. eCollection 2021 Aug 18.
8
Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Species.
Microorganisms. 2021 Jul 30;9(8):1628. doi: 10.3390/microorganisms9081628.
9
Characterization of Guided Entry of Tail-Anchored Proteins 3 Homologues in Mycobacterium tuberculosis.
J Bacteriol. 2019 Jun 21;201(14). doi: 10.1128/JB.00159-19. Print 2019 Jul 15.
10
The natural history of Get3-like chaperones.
Traffic. 2019 May;20(5):311-324. doi: 10.1111/tra.12643.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
3
Raster3D Version 2.0. A program for photorealistic molecular graphics.
Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869-73. doi: 10.1107/S0907444994006396.
4
The linker peptide of the ArsA ATPase.
Mol Microbiol. 2000 Jan;35(2):361-7. doi: 10.1046/j.1365-2958.2000.01696.x.
5
Mechanism of the ArsA ATPase.
Biochim Biophys Acta. 1999 Dec 6;1461(2):207-15. doi: 10.1016/s0005-2736(99)00159-5.
6
Both ATP sites of human P-glycoprotein are essential but not symmetric.
Biochemistry. 1999 Oct 19;38(42):13887-99. doi: 10.1021/bi991115m.
7
The anion-stimulated ATPase ArsA shows unisite and multisite catalytic activity.
J Biol Chem. 1999 Sep 3;274(36):25849-54. doi: 10.1074/jbc.274.36.25849.
8
Families of arsenic transporters.
Trends Microbiol. 1999 May;7(5):207-12. doi: 10.1016/s0966-842x(99)01494-8.
9
Biochemical, cellular, and pharmacological aspects of the multidrug transporter.
Annu Rev Pharmacol Toxicol. 1999;39:361-98. doi: 10.1146/annurev.pharmtox.39.1.361.
10
Asp45 is a Mg2+ ligand in the ArsA ATPase.
J Biol Chem. 1999 May 14;274(20):13854-8. doi: 10.1074/jbc.274.20.13854.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验