Fryback D G, Chinnis J O, Ulvila J W
University of Wisconsin-Madison, USA.
Int J Technol Assess Health Care. 2001 Winter;17(1):83-97. doi: 10.1017/s0266462301104083.
A desirable element of cost-effectiveness analysis (CEA) modeling is a systematic way to relate uncertainty about input parameters to uncertainty in the computational results of the CEA model. Use of Bayesian statistical estimation and Monte Carlo simulation provides a natural way to compute a posterior probability distribution for each CEA result. We demonstrate this approach by reanalyzing a previously published CEA evaluating the incremental cost-effectiveness of tissue plasminogen activator compared to streptokinase for thrombolysis in acute myocardial infarction patients using data from the GUSTO trial and other auxiliary data sources. We illustrate Bayesian estimation for proportions, mean costs, and mean quality-of-life weights. The computations are performed using the Bayesian analysis software WinBUGS, distributed by the MRC Biostatistics Unit, Cambridge, England.
成本效益分析(CEA)建模的一个理想要素是一种将输入参数的不确定性与CEA模型计算结果的不确定性联系起来的系统方法。使用贝叶斯统计估计和蒙特卡洛模拟为计算每个CEA结果的后验概率分布提供了一种自然的方法。我们通过重新分析先前发表的一项CEA来证明这种方法,该CEA使用来自GUSTO试验和其他辅助数据源的数据,评估了组织型纤溶酶原激活剂与链激酶相比在急性心肌梗死患者溶栓治疗中的增量成本效益。我们说明了比例、平均成本和平均生活质量权重的贝叶斯估计。计算使用由英国剑桥MRC生物统计学部分发的贝叶斯分析软件WinBUGS进行。