Suppr超能文献

一种新型内质网α-甘露糖苷酶样蛋白加速内质网相关降解。

A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation.

作者信息

Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay L O, Herscovics A, Nagata K

机构信息

Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan.

出版信息

EMBO Rep. 2001 May;2(5):415-22. doi: 10.1093/embo-reports/kve084.

Abstract

The quality control mechanism in the endoplasmic reticulum (ER) discriminates correctly folded proteins from misfolded polypeptides and determines their fate. Terminally misfolded proteins are retrotranslocated from the ER and degraded by cytoplasmic proteasomes, a mechanism known as ER-associated degradation (ERAD). We report the cDNA cloning of Edem, a mouse gene encoding a putative type II ER transmembrane protein. Expression of Edem mRNA was induced by various types of ER stress. Although the luminal region of ER degradation enhancing alpha-mannosidase-like protein (EDEM) is similar to class I alpha1,2-mannosidases involved in N-glycan processing, EDEM did not have enzymatic activity. Overexpression of EDEM in human embryonic kidney 293 cells accelerated the degradation of misfolded alpha1-antitrypsin, and EDEM bound to this misfolded glycoprotein. The results suggest that EDEM is directly involved in ERAD, and targets misfolded glycoproteins for degradation in an N-glycan dependent manner.

摘要

内质网(ER)中的质量控制机制可区分正确折叠的蛋白质和错误折叠的多肽,并决定它们的命运。末端错误折叠的蛋白质从内质网逆向转运,并由细胞质蛋白酶体降解,这一机制称为内质网相关降解(ERAD)。我们报告了Edem的cDNA克隆,Edem是一个编码假定的II型内质网跨膜蛋白的小鼠基因。Edem mRNA的表达受多种内质网应激诱导。虽然内质网降解增强α-甘露糖苷酶样蛋白(EDEM)的腔区与参与N-聚糖加工的I类α1,2-甘露糖苷酶相似,但EDEM没有酶活性。在人胚肾293细胞中过表达EDEM可加速错误折叠的α1-抗胰蛋白酶的降解,且EDEM与这种错误折叠的糖蛋白结合。结果表明,EDEM直接参与ERAD,并以N-聚糖依赖的方式靶向错误折叠的糖蛋白进行降解。

相似文献

1
A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation.
EMBO Rep. 2001 May;2(5):415-22. doi: 10.1093/embo-reports/kve084.
2
Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I.
J Biol Chem. 2003 Jul 11;278(28):26287-94. doi: 10.1074/jbc.M303395200. Epub 2003 May 6.
3
EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin.
Science. 2003 Feb 28;299(5611):1394-7. doi: 10.1126/science.1079181.
4
EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming.
J Biol Chem. 2006 Apr 7;281(14):9650-8. doi: 10.1074/jbc.M512191200. Epub 2006 Jan 23.
5
Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins.
Glycobiology. 2005 Apr;15(4):421-36. doi: 10.1093/glycob/cwi014. Epub 2004 Nov 10.
6
EDEM accelerates ERAD by preventing aberrant dimer formation of misfolded alpha1-antitrypsin.
Genes Cells. 2006 May;11(5):465-76. doi: 10.1111/j.1365-2443.2006.00957.x.
7
A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation.
J Biol Chem. 2005 Jan 28;280(4):2424-8. doi: 10.1074/jbc.C400534200. Epub 2004 Dec 3.
8
Stimulation of ERAD of misfolded null Hong Kong alpha1-antitrypsin by Golgi alpha1,2-mannosidases.
Biochem Biophys Res Commun. 2007 Oct 26;362(3):626-32. doi: 10.1016/j.bbrc.2007.08.057. Epub 2007 Aug 20.
10
The Role of Lectin-Carbohydrate Interactions in the Regulation of ER-Associated Protein Degradation.
Molecules. 2015 May 27;20(6):9816-46. doi: 10.3390/molecules20069816.

引用本文的文献

1
Hydroxyurea modulates thiol-disulfide homeostasis in the yeast endoplasmic reticulum.
Life Sci Alliance. 2025 Jun 20;8(8). doi: 10.26508/lsa.202503225. Print 2025 Aug.
2
Turnover of EDEM1, an ERAD-enhancing factor, is mediated by multiple degradation routes.
Genes Cells. 2024 Jun;29(6):486-502. doi: 10.1111/gtc.13117. Epub 2024 Apr 29.
3
The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis.
J Mol Biol. 2024 Jul 15;436(14):168418. doi: 10.1016/j.jmb.2023.168418. Epub 2023 Dec 22.
4
Amyloid Precursor Protein and Alzheimer's Disease.
Int J Mol Sci. 2023 Sep 30;24(19):14794. doi: 10.3390/ijms241914794.
6
ER-associated degradation in cystinosis pathogenesis and the prospects of precision medicine.
J Clin Invest. 2023 Oct 2;133(19):e169551. doi: 10.1172/JCI169551.
8
(date palm; Arecaceae) putative lectin homologs: Genome-wide search, architecture analysis, and evolutionary relationship.
Saudi J Biol Sci. 2023 Jun;30(6):103676. doi: 10.1016/j.sjbs.2023.103676. Epub 2023 May 4.
10
Calnexin, More Than Just a Molecular Chaperone.
Cells. 2023 Jan 24;12(3):403. doi: 10.3390/cells12030403.

本文引用的文献

1
Structural basis for catalysis and inhibition of N-glycan processing class I alpha 1,2-mannosidases.
J Biol Chem. 2000 Dec 29;275(52):41287-98. doi: 10.1074/jbc.M006927200.
4
The engagement of Sec61p in the ER dislocation process.
Mol Cell. 1999 Dec;4(6):925-34. doi: 10.1016/s1097-2765(00)80222-1.
5
Setting the standards: quality control in the secretory pathway.
Science. 1999 Dec 3;286(5446):1882-8. doi: 10.1126/science.286.5446.1882.
8
Retrograde protein translocation: ERADication of secretory proteins in health and disease.
Trends Biochem Sci. 1999 Jul;24(7):266-70. doi: 10.1016/s0968-0004(99)01420-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验