Lee J S, Bruce C R, Spriet L L, Hawley J A
Exercise Metabolism Group, School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia.
Exp Physiol. 2001 Jul;86(4):499-508. doi: 10.1113/eph8602158.
We determined the interaction of diet and training on metabolic adaptations in skeletal muscle and liver, and the consequences of these adaptations for endurance. Eighty rats performed a baseline treadmill run to exhaustion at 16 m min(-1) (RUN1) and were then divided into two groups and given one of two diets: high carbohydrate (CHO) or high fat (FAT). Each dietary group was then divided into one of four subgroups: sedentary control that performed no training (NT); low-intensity running (8 m min(-1); LOW) and two groups who trained at their maximal voluntary running speed without electrical stimulation (28 m min(-1); VMAX). Training volume was identical for LOW and VMAX (1000 m session(-1)) and animals ran 4 days week(-1) for 8 weeks. To assess the interaction of the higher intensity exercise with diet, a second endurance test (RUN2) was undertaken after 6 weeks at either 16 m min(-1) or 28 m min(-1). The NT group ran for a longer duration (increase of 77 %) after FAT than CHO (239 +/- 28 vs. 135 +/- 30 min, P < 0.05) at 16 m min(-1). There were no differences in RUN2 for the LOW group when rats ran at 16 m min(-1) (454 +/- 86 vs. 427 +/- 75 min for CHO and FAT groups, respectively), but rats in the VMAX group fed FAT ran longer than rats fed CHO at 28 m min(-1) (100 +/- 28 vs. 58 +/- 11 min, respectively, P < 0.05). FAT increased the activities of the enzymes citrate synthase, beta-hydroxyacyl-CoA dehydrogenase and carnitine palmitoyl-transferase compared to CHO (P < 0.01), but there was no systematic effect of training. We conclude: (1) there was no additive effect of a high-fat diet on endurance performance when rats performed low-intensity training; (2) running performance at 28 m min(-1) was only enhanced by a high-fat diet after more intense training; (3) diet-induced and training-induced adaptations that increase exercise capacity may be under independent control. Experimental Physiology (2001) 86.4, 499-508.
我们确定了饮食与训练对骨骼肌和肝脏代谢适应性的相互作用,以及这些适应性对耐力的影响。80只大鼠以16米/分钟的速度进行基线跑步机跑步直至力竭(RUN1),然后分为两组,分别给予两种饮食之一:高碳水化合物(CHO)或高脂肪(FAT)。然后,每个饮食组再分为四个亚组之一:不进行训练的久坐对照组(NT);低强度跑步(8米/分钟;LOW)以及两组以最大自主跑步速度且无电刺激进行训练的组(28米/分钟;VMAX)。LOW组和VMAX组的训练量相同(每次训练1000米),动物每周跑4天,共8周。为了评估更高强度运动与饮食的相互作用,在6周后进行了第二次耐力测试(RUN2),速度为16米/分钟或28米/分钟。在16米/分钟的速度下,NT组在摄入FAT饮食后比摄入CHO饮食后的跑步持续时间更长(增加了77%)(分别为239±28分钟和135±30分钟,P<0.05)。当大鼠以16米/分钟的速度跑步时,LOW组在RUN2中没有差异(CHO组和FAT组分别为454±86分钟和427±75分钟),但在28米/分钟的速度下,摄入FAT饮食的VMAX组大鼠比摄入CHO饮食的大鼠跑步时间更长(分别为100±28分钟和58±11分钟,P<0.05)。与CHO相比,FAT增加了柠檬酸合酶、β-羟酰基辅酶A脱氢酶和肉碱棕榈酰转移酶的活性(P<0.01),但训练没有系统性影响。我们得出结论:(1)当大鼠进行低强度训练时,高脂肪饮食对耐力表现没有累加效应;(2)只有在进行更剧烈训练后,高脂肪饮食才会提高28米/分钟速度下的跑步表现;(3)饮食诱导和训练诱导的增加运动能力的适应性可能受独立控制。《实验生理学》(2001年)86.4,499 - 508。