Suppr超能文献

解析与钾通道激活后期转变相关的门控电荷移动。

Resolving the gating charge movement associated with late transitions in K channel activation.

作者信息

Loboda A, Armstrong C M

机构信息

Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104. USA.

出版信息

Biophys J. 2001 Aug;81(2):905-16. doi: 10.1016/S0006-3495(01)75750-5.

Abstract

We examined the late transitions in the activation sequence of potassium channels by analyzing gating currents of mutant Shaker IR channels and using the potassium channel blocker 4-aminopyridine (4AP). Gating currents were recorded from a double mutant of Shaker that was nonconducting (W434F mutation) and had the late gating transitions shifted to the right on the voltage axis (L382C mutation), thus separating the late transitions from the early ones. 4AP applied to the double mutant blocked the final transition and made possible novel observations of the isolated intermediate transitions, the ones that immediately precede the final opening of the channel. These transitions, which have not been well characterized previously, produce a distinct fast component in the gating current tails. Two intermediate transitions contribute to the fast component and carry 23% of the total gating charge. The effect of 4AP is well modeled as a selective block of the final gating transition, which opens the channel. The final transition contributes approximately 5% of the total gating charge.

摘要

我们通过分析突变型Shaker IR通道的门控电流并使用钾通道阻滞剂4-氨基吡啶(4AP),研究了钾通道激活序列中的晚期转变。门控电流是从一个非传导性的Shaker双突变体(W434F突变)记录的,该突变体在电压轴上的晚期门控转变向右移动(L382C突变),从而将晚期转变与早期转变分开。应用于双突变体的4AP阻断了最终转变,并使得对孤立的中间转变进行新的观察成为可能,这些中间转变紧接在通道最终开放之前。这些以前没有得到很好表征的转变,在门控电流尾部产生一个明显的快速成分。两个中间转变对快速成分有贡献,并携带总门控电荷的23%。4AP的作用可以很好地模拟为对打开通道的最终门控转变的选择性阻断。最终转变贡献了总门控电荷的约5%。

相似文献

1
Resolving the gating charge movement associated with late transitions in K channel activation.
Biophys J. 2001 Aug;81(2):905-16. doi: 10.1016/S0006-3495(01)75750-5.
7
A model for 4-aminopyridine action on K channels: similarities to tetraethylammonium ion action.
Biophys J. 2001 Aug;81(2):895-904. doi: 10.1016/S0006-3495(01)75749-9.
8
Dilated and defunct K channels in the absence of K+.
Biophys J. 2001 Jun;80(6):2704-14. doi: 10.1016/S0006-3495(01)76239-X.
9
Macroscopic Na+ currents in the "Nonconducting" Shaker potassium channel mutant W434F.
J Gen Physiol. 1998 Jul;112(1):85-93. doi: 10.1085/jgp.112.1.85.
10
External barium influences the gating charge movement of Shaker potassium channels.
Biophys J. 1997 Jan;72(1):77-84. doi: 10.1016/S0006-3495(97)78648-X.

引用本文的文献

2
Stability of N-type inactivation and the coupling between N-type and C-type inactivation in the Aplysia Kv1 channel.
Pflugers Arch. 2024 Oct;476(10):1493-1516. doi: 10.1007/s00424-024-02982-5. Epub 2024 Jul 15.
3
Mechanism of 4-aminopyridine inhibition of the lysosomal channel TMEM175.
Proc Natl Acad Sci U S A. 2022 Nov;119(44):e2208882119. doi: 10.1073/pnas.2208882119. Epub 2022 Oct 24.
4
Relevance of silica surface morphology in Ampyra adsorption. Insights from quantum chemical calculations.
RSC Adv. 2019 Feb 5;9(8):4415-4421. doi: 10.1039/c8ra08792j. eCollection 2019 Jan 30.
5
Mechanism of use-dependent Kv2 channel inhibition by RY785.
J Gen Physiol. 2022 Jun 6;154(6). doi: 10.1085/jgp.202112981. Epub 2022 Apr 18.
6
Na and K channels: history and structure.
Biophys J. 2021 Mar 2;120(5):756-763. doi: 10.1016/j.bpj.2021.01.013. Epub 2021 Jan 21.
7
Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization.
Nat Commun. 2015 Dec 17;6:10173. doi: 10.1038/ncomms10173.
10
Dynamics of internal pore opening in K(V) channels probed by a fluorescent unnatural amino acid.
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8272-7. doi: 10.1073/pnas.1220398110. Epub 2013 Apr 29.

本文引用的文献

1
A model for 4-aminopyridine action on K channels: similarities to tetraethylammonium ion action.
Biophys J. 2001 Aug;81(2):895-904. doi: 10.1016/S0006-3495(01)75749-9.
3
Loss of shaker K channel conductance in 0 K+ solutions: role of the voltage sensor.
Biophys J. 1998 Oct;75(4):1828-35. doi: 10.1016/S0006-3495(98)77624-6.
5
Activation of Shaker potassium channels. II. Kinetics of the V2 mutant channel.
J Gen Physiol. 1998 Feb;111(2):295-311. doi: 10.1085/jgp.111.2.295.
6
Activation of shaker potassium channels. I. Characterization of voltage-dependent transitions.
J Gen Physiol. 1998 Feb;111(2):271-94. doi: 10.1085/jgp.111.2.271.
7
N-type inactivation and the S4-S5 region of the Shaker K+ channel.
J Gen Physiol. 1996 Sep;108(3):195-206. doi: 10.1085/jgp.108.3.195.
8
Contribution of the S4 segment to gating charge in the Shaker K+ channel.
Neuron. 1996 Jun;16(6):1169-77. doi: 10.1016/s0896-6273(00)80143-9.
9
Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel.
Neuron. 1996 Jun;16(6):1159-67. doi: 10.1016/s0896-6273(00)80142-7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验