Suppr超能文献

大肠杆菌核糖体RNA前导区内碱基变化突变对rRNA成熟和核糖体形成的影响。

Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.

作者信息

Schäferkordt J, Wagner R

机构信息

Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.

出版信息

Nucleic Acids Res. 2001 Aug 15;29(16):3394-403. doi: 10.1093/nar/29.16.3394.

Abstract

The effects of base change mutations in a highly conserved sequence (boxC) within the leader of bacterial ribosomal RNAs (rRNAs) was studied. The boxC sequence preceding the 16S rRNA structural gene constitutes part of the RNase III processing site, one of the first cleavage sites on the pathway to mature 16S rRNA. Moreover, rRNA leader sequences facilitate correct 16S rRNA folding, thereby assisting ribosomal subunit formation. Mutations in boxC cause cold sensitivity and result in 16S rRNA and 30S subunit deficiency. Strains in which all rRNA operons are replaced by mutant transcription units are viable. Thermodynamic studies by temperature gradient gel electrophoresis reveal that mutant transcripts have a different, less ordered structure. In addition, RNA secondary structure differences between mutant and wild-type transcripts were determined by chemical and enzymatic probing. Differences are found in the leader RNA sequence itself but also in structurally important regions of the mature 16S rRNA. A minor fraction of the rRNA transcripts from mutant operons is not processed by RNase III, resulting in a significantly extended precursor half-life compared to the wild-type. The boxC mutations also give rise to a new aberrant degradation product of 16S rRNA. This intermediate cannot be detected in strains lacking RNase III. Together the results indicate that the boxC sequence, although important for RNase III processing, is likely to serve additional functions by facilitating correct formation of the mature 16S rRNA structure. They also suggest that quality control steps are acting during ribosome biogenesis.

摘要

研究了细菌核糖体RNA(rRNA)前导序列中高度保守序列(boxC)的碱基变化突变的影响。16S rRNA结构基因之前的boxC序列构成了RNase III加工位点的一部分,该位点是成熟16S rRNA生成途径中的首批切割位点之一。此外,rRNA前导序列有助于16S rRNA正确折叠,从而辅助核糖体亚基的形成。boxC中的突变会导致冷敏感性,并导致16S rRNA和30S亚基缺乏。所有rRNA操纵子都被突变转录单元取代的菌株是可行的。通过温度梯度凝胶电泳进行的热力学研究表明,突变转录本具有不同的、不太有序的结构。此外,通过化学和酶促探测确定了突变转录本和野生型转录本之间的RNA二级结构差异。不仅在前导RNA序列本身发现了差异,在成熟16S rRNA的结构重要区域也发现了差异。来自突变操纵子的一小部分rRNA转录本不会被RNase III加工,与野生型相比,导致前体半衰期显著延长。boxC突变还产生了一种新的16S rRNA异常降解产物。在缺乏RNase III的菌株中无法检测到这种中间体。这些结果共同表明,boxC序列虽然对RNase III加工很重要,但可能通过促进成熟16S rRNA结构的正确形成发挥额外的功能。它们还表明,在核糖体生物发生过程中存在质量控制步骤。

相似文献

3
The Escherichia coli ribosomal RNA leader: a structural and functional investigation.
Biol Chem Hoppe Seyler. 1994 Jan;375(1):11-20. doi: 10.1515/bchm3.1994.375.1.11.
5
RNase G (CafA protein) and RNase E are both required for the 5' maturation of 16S ribosomal RNA.
EMBO J. 1999 May 17;18(10):2878-85. doi: 10.1093/emboj/18.10.2878.
7
The role of RbfA in 16S rRNA processing and cell growth at low temperature in Escherichia coli.
J Mol Biol. 2003 Sep 19;332(3):575-84. doi: 10.1016/s0022-2836(03)00953-7.
10
The Escherichia coli ribosomal RNA leader nut region interacts specifically with mature 16S RNA.
Nucleic Acids Res. 1995 Mar 25;23(6):932-41. doi: 10.1093/nar/23.6.932.

引用本文的文献

1
The Escherichia coli translation-associated heat shock protein YbeY is involved in rRNA transcription antitermination.
PLoS One. 2013 Apr 29;8(4):e62297. doi: 10.1371/journal.pone.0062297. Print 2013.
2
Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli.
Mol Microbiol. 2013 Jan;87(2):382-93. doi: 10.1111/mmi.12105. Epub 2012 Dec 10.
3
Gateway role for rRNA precursors in ribosome assembly.
J Bacteriol. 2012 Dec;194(24):6875-82. doi: 10.1128/JB.01467-12. Epub 2012 Oct 12.
4
Role of precursor sequences in the ordered maturation of E. coli 23S ribosomal RNA.
RNA. 2012 Feb;18(2):345-53. doi: 10.1261/rna.027854.111. Epub 2011 Dec 21.
5
Growth rate regulation in Escherichia coli.
FEMS Microbiol Rev. 2012 Mar;36(2):269-87. doi: 10.1111/j.1574-6976.2011.00279.x. Epub 2011 Jun 3.
7
Appropriate maturation and folding of 16S rRNA during 30S subunit biogenesis are critical for translational fidelity.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4567-72. doi: 10.1073/pnas.0912305107. Epub 2010 Feb 22.
8
Evolutionary comparison of ribosomal operon antitermination function.
J Bacteriol. 2008 Nov;190(21):7251-7. doi: 10.1128/JB.00760-08. Epub 2008 Aug 29.
9
Ribosome biogenesis and the translation process in Escherichia coli.
Microbiol Mol Biol Rev. 2007 Sep;71(3):477-94. doi: 10.1128/MMBR.00013-07.
10
Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation.
EMBO J. 2006 Apr 5;25(7):1515-21. doi: 10.1038/sj.emboj.7601041. Epub 2006 Mar 16.

本文引用的文献

1
The bacterial ribosome at atomic resolution.
Structure. 2000 Oct 15;8(10):R195-200. doi: 10.1016/s0969-2126(00)00510-4.
2
Structure of the 30S ribosomal subunit.
Nature. 2000 Sep 21;407(6802):327-39. doi: 10.1038/35030006.
3
Structural biology. The ribosome is a ribozyme.
Science. 2000 Aug 11;289(5481):878-9. doi: 10.1126/science.289.5481.878.
4
The structural basis of ribosome activity in peptide bond synthesis.
Science. 2000 Aug 11;289(5481):920-30. doi: 10.1126/science.289.5481.920.
5
GTPases mechanisms and functions of translation factors on the ribosome.
Biol Chem. 2000 May-Jun;381(5-6):377-87. doi: 10.1515/BC.2000.050.
7
X-ray crystal structures of 70S ribosome functional complexes.
Science. 1999 Sep 24;285(5436):2095-104. doi: 10.1126/science.285.5436.2095.
8
Ribosomal mechanics, antibiotics, and GTP hydrolysis.
Cell. 1999 May 14;97(4):423-6. doi: 10.1016/s0092-8674(00)80751-5.
10
Multiple functions of the transcribed spacers in ribosomal RNA operons.
Biol Chem. 1998 Jul;379(7):783-93. doi: 10.1515/bchm.1998.379.7.783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验