Suppr超能文献

β-D-聚糖合酶与纤维素合酶(CesA)基因家族:从混合连接(1→3),(1→4)β-D-葡聚糖合酶中汲取的经验教训

Beta-D-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1-->3),(1-->4)beta-D-glucan synthase.

作者信息

Vergara C E, Carpita N C

机构信息

Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1155, USA.

出版信息

Plant Mol Biol. 2001 Sep;47(1-2):145-60.

Abstract

Cellulose synthase genes (CesAs) encode a broad range of processive glycosyltransferases that synthesize (1-->4)beta-D-glycosyl units. The proteins predicted to be encoded by these genes contain up to eight membrane-spanning domains and four 'U-motifs' with conserved aspartate residues and a QxxRW motif that are essential for substrate binding and catalysis. In higher plants, the domain structure includes two plant-specific regions, one that is relatively conserved and a second, so-called 'hypervariable region' (HVR). Analysis of the phylogenetic relationships among members of the CesA multi-gene families from two grass species, Oryza sativa and Zea mays, with Arabidopsis thaliana and other dicotyledonous species reveals that the CesA genes cluster into several distinct sub-classes. Whereas some sub-classes are populated by CesAs from all species, two sub-classes are populated solely by CesAs from grass species. The sub-class identity is primarily defined by the HVR, and the sequence in this region does not vary substantially among members of the same sub-class. Hence, we suggest that the region is more aptly termed a 'class-specific region' (CSR). Several motifs containing cysteine, basic, acidic and aromatic residues indicate that the CSR may function in substrate binding specificity and catalysis. Similar motifs are conserved in bacterial cellulose synthases, the Dictyostelium discoideum cellulose synthase, and other processive glycosyltransferases involved in the synthesis of non-cellulosic polymers with (1-->4)beta-linked backbones, including chitin, heparan, and hyaluronan. These analyses re-open the question whether all the CesA genes encode cellulose synthases or whether some of the sub-class members may encode other non-cellulosic (1-->4)beta-glycan synthases in plants. For example, the mixed-linkage (1-->3)(1-->4)beta-D-glucan synthase is found specifically in grasses and possesses many features more similar to those of cellulose synthase than to those of other beta-linked cross-linking glycans. In this respect, the enzymatic properties of the mixed-linkage beta-glucan synthases not only provide special insight into the mechanisms of (1-->4)beta-glycan synthesis but may also uncover the genes that encode the synthases themselves.

摘要

纤维素合酶基因(CesAs)编码多种合成(1→4)β-D-糖基单元的持续性糖基转移酶。这些基因预测编码的蛋白质含有多达八个跨膜结构域以及四个带有保守天冬氨酸残基的“U基序”和一个对底物结合及催化至关重要的QxxRW基序。在高等植物中,结构域结构包括两个植物特有的区域,一个相对保守,另一个即所谓的“高变区”(HVR)。对来自两种禾本科植物水稻和玉米的CesA多基因家族成员与拟南芥及其他双子叶植物物种之间的系统发育关系分析表明,CesA基因聚集成几个不同的亚类。虽然有些亚类包含所有物种的CesA,但有两个亚类仅由禾本科植物的CesA组成。亚类身份主要由HVR定义,并且该区域的序列在同一亚类的成员之间变化不大。因此,我们建议该区域更恰当地称为“类特异性区域”(CSR)。几个含有半胱氨酸、碱性、酸性和芳香族残基的基序表明CSR可能在底物结合特异性和催化中起作用。类似的基序在细菌纤维素合酶、盘基网柄菌纤维素合酶以及其他参与合成具有(1→4)β-连接主链的非纤维素聚合物(包括几丁质、乙酰肝素和透明质酸)的持续性糖基转移酶中保守。这些分析重新提出了一个问题,即所有CesA基因是否都编码纤维素合酶,或者某些亚类成员是否可能编码植物中的其他非纤维素(1→4)β-聚糖合酶。例如,混合连接(1→3)(1→4)β-D-葡聚糖合酶专门存在于禾本科植物中,并且具有许多与纤维素合酶更相似而非与其他β-连接交联聚糖更相似的特征。在这方面,混合连接β-葡聚糖合酶的酶学特性不仅为(1→4)β-聚糖合成机制提供了特殊见解,还可能揭示编码这些合酶本身的基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验