Zhang Weilie, Basile Anthony S, Gomeza Jesus, Volpicelli Laura A, Levey Allan I, Wess Jürgen
Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA.
J Neurosci. 2002 Mar 1;22(5):1709-17. doi: 10.1523/JNEUROSCI.22-05-01709.2002.
Forebrain muscarinic acetylcholine (ACh) receptors (mAChRs; M1-M5) are predicted to play important roles in many fundamental central functions, including higher cognitive processes and modulation of extrapyramidal motor activity. Synaptic ACh levels are known to be regulated by the activity of presynaptic muscarinic autoreceptors mediating inhibition of ACh release. Primarily because of the use of ligands with limited receptor subtype selectivity, classical pharmacological studies have led to conflicting results regarding the identity of the mAChR subtypes mediating this activity in different areas of the brain. To investigate the molecular identity of hippocampal, cortical, and striatal inhibitory muscarinic autoreceptors in a more direct manner, we used genetically altered mice lacking functional M2 and/or M4 mAChRs [knock-out (KO) mice]. After labeling of cellular ACh pools with [3H]choline, potassium-stimulated [3H]ACh release was measured in superfused brain slices, either in the absence or the presence of muscarinic drugs. The nonsubtype-selective muscarinic agonist, oxotremorine (0.1-10 microm), inhibited potassium-stimulated [3H]ACh release in hippocampal, cortical, and striatal slices prepared from wild-type mice by up to 80%. This activity was totally abolished in tissues prepared from M2-M4 receptor double KO mice. Strikingly, release studies with brain slices from M2 and M4 receptor single KO mice indicated that autoinhibition of ACh release is mediated primarily by the M2 receptor in hippocampus and cerebral cortex, but predominantly by the M4 receptor in the striatum. These results, together with additional receptor localization studies, support the novel concept that autoinhibition of ACh release involves different mAChRs in different regions of the brain.
前脑毒蕈碱型乙酰胆碱(ACh)受体(mAChRs;M1 - M5)被认为在许多基本中枢功能中发挥重要作用,包括高级认知过程和锥体外系运动活动的调节。已知突触ACh水平受介导ACh释放抑制的突触前毒蕈碱型自身受体活性的调节。主要由于使用了受体亚型选择性有限的配体,经典药理学研究对于介导大脑不同区域这种活性的mAChR亚型的身份得出了相互矛盾的结果。为了更直接地研究海马、皮质和纹状体抑制性毒蕈碱型自身受体的分子身份,我们使用了缺乏功能性M2和/或M4 mAChRs的基因改造小鼠[基因敲除(KO)小鼠]。在用[3H]胆碱标记细胞ACh池后,在无或有毒蕈碱药物存在的情况下,测量了在灌流脑片中钾刺激的[3H]ACh释放。非亚型选择性毒蕈碱激动剂氧化震颤素(0.1 - 10微摩尔)可将野生型小鼠制备的海马、皮质和纹状体切片中钾刺激的[3H]ACh释放抑制高达80%。在M2 - M4受体双敲除小鼠制备的组织中,这种活性完全消失。引人注目的是,对M2和M4受体单敲除小鼠脑片的释放研究表明,ACh释放的自身抑制在海马和大脑皮质中主要由M2受体介导,但在纹状体中主要由M4受体介导。这些结果,连同额外的受体定位研究,支持了一个新的概念,即ACh释放的自身抑制在大脑不同区域涉及不同的mAChRs。