Akashi Hiroshi, Gojobori Takashi
Institute of Molecular Evolutionary Genetics and Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3695-700. doi: 10.1073/pnas.062526999.
Biosynthesis of an Escherichia coli cell, with organic compounds as sources of energy and carbon, requires approximately 20 to 60 billion high-energy phosphate bonds [Stouthamer, A. H. (1973) Antonie van Leeuwenhoek 39, 545-565]. A substantial fraction of this energy budget is devoted to biosynthesis of amino acids, the building blocks of proteins. The fueling reactions of central metabolism provide precursor metabolites for synthesis of the 20 amino acids incorporated into proteins. Thus, synthesis of an amino acid entails a dual cost: energy is lost by diverting chemical intermediates from fueling reactions and additional energy is required to convert precursor metabolites to amino acids. Among amino acids, costs of synthesis vary from 12 to 74 high-energy phosphate bonds per molecule. The energetic advantage to encoding a less costly amino acid in a highly expressed gene can be greater than 0.025% of the total energy budget. Here, we provide evidence that amino acid composition in the proteomes of E. coli and Bacillus subtilis reflects the action of natural selection to enhance metabolic efficiency. We employ synonymous codon usage bias as a measure of translation rates and show increases in the abundance of less energetically costly amino acids in highly expressed proteins.
以有机化合物作为能量和碳源,大肠杆菌细胞的生物合成需要大约200亿到600亿个高能磷酸键[斯托特哈默,A.H.(1973年)《安托尼·范·列文虎克》39卷,545 - 565页]。这一能量预算的很大一部分用于氨基酸的生物合成,氨基酸是蛋白质的组成部分。中心代谢的供能反应为合成纳入蛋白质的20种氨基酸提供前体代谢物。因此,合成一种氨基酸需要双重成本:通过从供能反应中转移化学中间体而损失能量,并且需要额外的能量将前体代谢物转化为氨基酸。在氨基酸中,每分子合成成本从12个到74个高能磷酸键不等。在高表达基因中编码成本较低的氨基酸所带来的能量优势可能大于总能量预算的0.025%。在这里,我们提供证据表明,大肠杆菌和枯草芽孢杆菌蛋白质组中的氨基酸组成反映了自然选择提高代谢效率的作用。我们采用同义密码子使用偏好作为翻译速率的衡量标准,并表明在高表达蛋白质中,能量成本较低的氨基酸丰度增加。