Suppr超能文献

大肠杆菌和枯草芽孢杆菌蛋白质组中的代谢效率和氨基酸组成。

Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis.

作者信息

Akashi Hiroshi, Gojobori Takashi

机构信息

Institute of Molecular Evolutionary Genetics and Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3695-700. doi: 10.1073/pnas.062526999.

Abstract

Biosynthesis of an Escherichia coli cell, with organic compounds as sources of energy and carbon, requires approximately 20 to 60 billion high-energy phosphate bonds [Stouthamer, A. H. (1973) Antonie van Leeuwenhoek 39, 545-565]. A substantial fraction of this energy budget is devoted to biosynthesis of amino acids, the building blocks of proteins. The fueling reactions of central metabolism provide precursor metabolites for synthesis of the 20 amino acids incorporated into proteins. Thus, synthesis of an amino acid entails a dual cost: energy is lost by diverting chemical intermediates from fueling reactions and additional energy is required to convert precursor metabolites to amino acids. Among amino acids, costs of synthesis vary from 12 to 74 high-energy phosphate bonds per molecule. The energetic advantage to encoding a less costly amino acid in a highly expressed gene can be greater than 0.025% of the total energy budget. Here, we provide evidence that amino acid composition in the proteomes of E. coli and Bacillus subtilis reflects the action of natural selection to enhance metabolic efficiency. We employ synonymous codon usage bias as a measure of translation rates and show increases in the abundance of less energetically costly amino acids in highly expressed proteins.

摘要

以有机化合物作为能量和碳源,大肠杆菌细胞的生物合成需要大约200亿到600亿个高能磷酸键[斯托特哈默,A.H.(1973年)《安托尼·范·列文虎克》39卷,545 - 565页]。这一能量预算的很大一部分用于氨基酸的生物合成,氨基酸是蛋白质的组成部分。中心代谢的供能反应为合成纳入蛋白质的20种氨基酸提供前体代谢物。因此,合成一种氨基酸需要双重成本:通过从供能反应中转移化学中间体而损失能量,并且需要额外的能量将前体代谢物转化为氨基酸。在氨基酸中,每分子合成成本从12个到74个高能磷酸键不等。在高表达基因中编码成本较低的氨基酸所带来的能量优势可能大于总能量预算的0.025%。在这里,我们提供证据表明,大肠杆菌和枯草芽孢杆菌蛋白质组中的氨基酸组成反映了自然选择提高代谢效率的作用。我们采用同义密码子使用偏好作为翻译速率的衡量标准,并表明在高表达蛋白质中,能量成本较低的氨基酸丰度增加。

相似文献

1
Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3695-700. doi: 10.1073/pnas.062526999.
2
Amino acid cost and codon-usage biases in 6 prokaryotic genomes: a whole-genome analysis.
Mol Biol Evol. 2006 Sep;23(9):1670-80. doi: 10.1093/molbev/msl029. Epub 2006 Jun 5.
5
Evidence of selection for low cognate amino acid bias in amino acid biosynthetic enzymes.
Mol Microbiol. 2005 May;56(4):1017-34. doi: 10.1111/j.1365-2958.2005.04566.x.
6
Designing efficient genetic code expansion in Bacillus subtilis to gain biological insights.
Nat Commun. 2021 Sep 14;12(1):5429. doi: 10.1038/s41467-021-25691-4.
7
Comparative action of glyphosate as a trigger of energy drain in eubacteria.
J Bacteriol. 1986 Dec;168(3):1147-54. doi: 10.1128/jb.168.3.1147-1154.1986.
8
Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2419-24. doi: 10.1073/pnas.1211077110. Epub 2012 Dec 31.
9
Codon usage of highly expressed genes affects proteome-wide translation efficiency.
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4940-E4949. doi: 10.1073/pnas.1719375115. Epub 2018 May 7.
10
Chemical Evolution of a Bacterial Proteome.
Angew Chem Int Ed Engl. 2015 Aug 17;54(34):10030-4. doi: 10.1002/anie.201502868. Epub 2015 Jul 1.

引用本文的文献

2
The role of metabolism in shaping enzyme structures over 400 million years.
Nature. 2025 Jul 9. doi: 10.1038/s41586-025-09205-6.
3
ATP requirements for growth reveal the bioenergetic impact of mitochondrial symbiosis.
Biochim Biophys Acta Bioenerg. 2025 Jun 23;1866(4):149564. doi: 10.1016/j.bbabio.2025.149564.
4
Metagenomic analysis of heavy water-adapted bacterial communities.
Microb Genom. 2025 May;11(5). doi: 10.1099/mgen.0.001414.
5
Type I-E* CRISPR-Cas of upregulates bacterial virulence by targeting endogenous histidine utilization system.
mSphere. 2025 Jun 25;10(6):e0021525. doi: 10.1128/msphere.00215-25. Epub 2025 May 19.
6
Spatially structured bacterial interactions alter algal carbon flow to bacteria.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf096.
7
NAD(H) and NADP(H) in plants and mammals.
Mol Plant. 2025 Jun 2;18(6):938-959. doi: 10.1016/j.molp.2025.05.004. Epub 2025 May 13.
9
Bacterial Amino Acid Auxotrophies Enable Energetically Costlier Proteomes.
Int J Mol Sci. 2025 Mar 4;26(5):2285. doi: 10.3390/ijms26052285.
10
Analysis of synonymous codon usage bias in the chloroplast genome of five Caragana.
BMC Plant Biol. 2025 Mar 13;25(1):322. doi: 10.1186/s12870-025-06351-x.

本文引用的文献

1
ANALYZING TABLES OF STATISTICAL TESTS.
Evolution. 1989 Jan;43(1):223-225. doi: 10.1111/j.1558-5646.1989.tb04220.x.
2
Compositional correlation between deoxyribonucleic acid and protein.
Cold Spring Harb Symp Quant Biol. 1961;26:35-43. doi: 10.1101/sqb.1961.026.01.009.
3
Characterizations of highly expressed genes of four fast-growing bacteria.
J Bacteriol. 2001 Sep;183(17):5025-40. doi: 10.1128/JB.183.17.5025-5040.2001.
4
Molecular evolution of protein atomic composition.
Science. 2001 Jul 13;293(5528):297-300. doi: 10.1126/science.1061052.
6
Horizontal gene transfer in bacterial and archaeal complete genomes.
Genome Res. 2000 Nov;10(11):1719-25. doi: 10.1101/gr.130000.
7
Nucleotide bias causes a genomewide bias in the amino acid composition of proteins.
Mol Biol Evol. 2000 Nov;17(11):1581-8. doi: 10.1093/oxfordjournals.molbev.a026257.
8
Genome-wide analysis relating expression level with protein subcellular localization.
Trends Genet. 2000 Oct;16(10):426-30. doi: 10.1016/s0168-9525(00)02108-9.
10
WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction.
Nucleic Acids Res. 2000 Jan 1;28(1):123-5. doi: 10.1093/nar/28.1.123.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验