Suppr超能文献

酶催化中的预组织与蛋白质动力学。

Preorganization and protein dynamics in enzyme catalysis.

作者信息

Rajagopalan P T Ravi, Benkovic Stephen J

机构信息

Department of Chemistry, Pennsylvania State University, University Park, 16802, USA.

出版信息

Chem Rec. 2002;2(1):24-36. doi: 10.1002/tcr.10009.

Abstract

Recently, an alternative has been offered to the concept of transition state (TS) stabilization as an explanation for rate enhancements in enzyme-catalyzed reactions. Instead, most of the rate increase has been ascribed to preorganization of the enzyme active site to bind substrates in a geometry close to that of the TS, which then transit the activation barrier impelled by motions along the reaction coordinate. The question as to how an enzyme achieves such preorganization and concomitant TS stabilization as well as potential coupled motions along the reaction coordinate leads directly to the role of protein dynamic motion. Dihydrofolate reductase (DHFR) is a paradigm in which the role of dynamics in catalysis continues to be unraveled by a wealth of kinetic, structural, and computational studies. DHFR has flexible loop regions adjacent to the active site whose motions modulate passage through the kinetically preferred pathway. The participation of residues distant from the DHFR active site in enhancing the rate of hydride transfer, however, is unanticipated and may signify the importance of long range protein motions. The general significance of protein dynamics in understanding other biological processes is briefly discussed.

摘要

最近,有人提出了一种替代过渡态(TS)稳定化概念的观点,以此来解释酶催化反应中速率的提高。相反,大部分速率增加归因于酶活性位点的预组织,使其以接近过渡态的几何结构结合底物,然后沿着反应坐标的运动推动底物跨越活化能垒。关于酶如何实现这种预组织以及伴随的过渡态稳定化,以及沿着反应坐标的潜在耦合运动的问题,直接引出了蛋白质动态运动的作用。二氢叶酸还原酶(DHFR)是一个范例,大量的动力学、结构和计算研究不断揭示其动力学在催化中的作用。DHFR在活性位点附近有灵活的环区,其运动调节通过动力学上优选途径的过程。然而,远离DHFR活性位点的残基参与提高氢化物转移速率是出乎意料的,这可能表明长程蛋白质运动的重要性。本文简要讨论了蛋白质动力学在理解其他生物过程中的一般意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验