Williams Spencer J, Senaratne Ryan H, Mougous Joseph D, Riley Lee W, Bertozzi Carolyn R
Howard Hughes Medical Institute and Department of Chemistry, University of California, Berkeley, California 94720, USA.
J Biol Chem. 2002 Sep 6;277(36):32606-15. doi: 10.1074/jbc.M204613200. Epub 2002 Jun 18.
Bacterial sulfate assimilation pathways provide for activation of inorganic sulfur for the biosynthesis of cysteine and methionine, through either adenosine 5'-phosphosulfate (APS) or 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as intermediates. PAPS is also the substrate for sulfotransferases that produce sulfolipids, putative virulence factors, in Mycobacterium tuberculosis such as SL-1. In this report, genetic complementation using Escherichia coli mutant strains deficient in APS kinase and PAPS reductase was used to define the M. tuberculosis and Mycobacterium smegmatis CysH enzymes as APS reductases. Consequently, the sulfate assimilation pathway of M. tuberculosis proceeds from sulfate through APS, which is acted on by APS reductase in the first committed step toward cysteine and methionine. Thus, M. tuberculosis most likely produces PAPS for the sole use of this organism's sulfotransferases. Deletion of CysH from M. smegmatis afforded a cysteine and methionine auxotroph consistent with a metabolic branch point centered on APS. In addition, we have redefined the substrate specificity of the B. subtilis CysH, formerly designated a PAPS reductase, as an APS reductase, based on its ability to complement a mutant E. coli strain deficient in APS kinase. Together, these studies show that two conserved sequence motifs, CCXXRKXXPL and SXGCXXCT, found in the C termini of all APS reductases, but not in PAPS reductases, may be used to predict the substrate specificity of these enzymes. A functional domain of the M. tuberculosis CysC protein was cloned and expressed in E. coli, confirming the ability of this organism to make PAPS. The expression of recombinant M. tuberculosis APS kinase provides a means for the discovery of inhibitors of this enzyme and thus of the biosynthesis of SL-1.
细菌硫酸盐同化途径通过腺苷5'-磷酸硫酸酯(APS)或3'-磷酸腺苷5'-磷酸硫酸酯(PAPS)作为中间体,为半胱氨酸和甲硫氨酸的生物合成提供无机硫的活化形式。PAPS也是结核分枝杆菌中产生硫脂(如SL-1)的磺基转移酶的底物,硫脂被认为是毒力因子。在本报告中,利用缺乏APS激酶和PAPS还原酶的大肠杆菌突变株进行基因互补,将结核分枝杆菌和耻垢分枝杆菌的CysH酶定义为APS还原酶。因此,结核分枝杆菌的硫酸盐同化途径从硫酸盐经APS开始,在朝向半胱氨酸和甲硫氨酸的第一个关键步骤中,APS由APS还原酶作用。因此,结核分枝杆菌很可能产生PAPS,仅供该生物体的磺基转移酶使用。从耻垢分枝杆菌中缺失CysH产生了半胱氨酸和甲硫氨酸营养缺陷型,这与以APS为中心的代谢分支点一致。此外,基于枯草芽孢杆菌CysH能够互补缺乏APS激酶的大肠杆菌突变株,我们将其底物特异性重新定义为APS还原酶,而不是之前指定的PAPS还原酶。这些研究共同表明,在所有APS还原酶的C末端发现的两个保守序列基序CCXXRKXXPL和SXGCXXCT,但在PAPS还原酶中未发现,可用于预测这些酶的底物特异性。结核分枝杆菌CysC蛋白的一个功能域在大肠杆菌中克隆并表达,证实了该生物体产生PAPS的能力。重组结核分枝杆菌APS激酶的表达为发现该酶的抑制剂以及SL-1生物合成的抑制剂提供了一种手段。