Suppr超能文献

论细胞的进化

On the evolution of cells.

作者信息

Woese Carl R

机构信息

Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, B103 Chemical and Life Sciences Laboratory, Urbana, IL 61801-3709, USA.

出版信息

Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8742-7. doi: 10.1073/pnas.132266999. Epub 2002 Jun 19.

Abstract

A theory for the evolution of cellular organization is presented. The model is based on the (data supported) conjecture that the dynamic of horizontal gene transfer (HGT) is primarily determined by the organization of the recipient cell. Aboriginal cell designs are taken to be simple and loosely organized enough that all cellular componentry can be altered and/or displaced through HGT, making HGT the principal driving force in early cellular evolution. Primitive cells did not carry a stable organismal genealogical trace. Primitive cellular evolution is basically communal. The high level of novelty required to evolve cell designs is a product of communal invention, of the universal HGT field, not intralineage variation. It is the community as a whole, the ecosystem, which evolves. The individual cell designs that evolved in this way are nevertheless fundamentally distinct, because the initial conditions in each case are somewhat different. As a cell design becomes more complex and interconnected a critical point is reached where a more integrated cellular organization emerges, and vertically generated novelty can and does assume greater importance. This critical point is called the "Darwinian Threshold" for the reasons given.

摘要

本文提出了一种细胞组织进化理论。该模型基于(有数据支持的)推测,即水平基因转移(HGT)的动态主要由受体细胞的组织形式决定。原始细胞设计被认为是简单且组织松散的,以至于所有细胞组成部分都可以通过HGT进行改变和/或置换,这使得HGT成为早期细胞进化的主要驱动力。原始细胞没有携带稳定的生物体谱系痕迹。原始细胞进化基本上是群体性的。进化细胞设计所需的高度新颖性是群体发明的产物,是普遍的HGT领域的产物,而非谱系内变异的产物。进化的是整个群体,即生态系统。以这种方式进化的个体细胞设计在本质上仍然是不同的,因为每种情况下的初始条件都略有不同。随着细胞设计变得更加复杂和相互关联,会达到一个临界点,此时会出现更整合的细胞组织,垂直产生的新颖性能够且确实变得更加重要。出于上述原因,这个临界点被称为“达尔文阈值”。

相似文献

1
On the evolution of cells.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8742-7. doi: 10.1073/pnas.132266999. Epub 2002 Jun 19.
2
Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015;92(5):052909. doi: 10.1103/PhysRevE.92.052909. Epub 2015 Nov 13.
3
Global extent of horizontal gene transfer.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4489-94. doi: 10.1073/pnas.0611557104. Epub 2007 Mar 7.
4
Role of horizontal gene transfer in the evolution of plant parasitism among nematodes.
Methods Mol Biol. 2009;532:517-35. doi: 10.1007/978-1-60327-853-9_30.
5
The universal ancestor.
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6854-9. doi: 10.1073/pnas.95.12.6854.
6
Horizontal gene transfer and the evolution of methanogenic pathways.
Methods Mol Biol. 2009;532:163-79. doi: 10.1007/978-1-60327-853-9_9.
7
Interpreting the universal phylogenetic tree.
Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8392-6. doi: 10.1073/pnas.97.15.8392.
8
Hosts, parasites, and horizontal gene transfer.
Trends Parasitol. 2013 Jul;29(7):329-38. doi: 10.1016/j.pt.2013.05.001. Epub 2013 Jun 5.
9
Evolution of genes and organisms: the tree/web of life in light of horizontal gene transfer.
Ann N Y Acad Sci. 2009 Oct;1178:137-45. doi: 10.1111/j.1749-6632.2009.04998.x.
10
Horizontal gene transfer and the earliest stages of the evolution of life.
Res Microbiol. 2009 Sep;160(7):473-80. doi: 10.1016/j.resmic.2009.07.009. Epub 2009 Jul 30.

引用本文的文献

1
Assembly theory and its relationship with computational complexity.
Npj Complex. 2025;2(1):27. doi: 10.1038/s44260-025-00049-9. Epub 2025 Sep 3.
2
Beyond the Second Law: Darwinian Evolution as a Tendency for Entropy Production to Increase.
Entropy (Basel). 2025 Aug 11;27(8):850. doi: 10.3390/e27080850.
4
Towards an Evolutionary Model of Animal-Associated Microbiomes.
Entropy (Basel). 2011 Mar;13(3):570-594. doi: 10.3390/e13030570. Epub 2011 Feb 25.
5
The Origin(s) of LUCA: Computer Simulation of a New Theory.
Life (Basel). 2025 Jan 10;15(1):75. doi: 10.3390/life15010075.
6
7
Did organs precede organisms in the origin of life?
Microlife. 2024 Dec 23;5:uqae025. doi: 10.1093/femsml/uqae025. eCollection 2024.
8
From Catalysis of Evolution to Evolution of Catalysis.
Acc Chem Res. 2024 Nov 5;57(21):3081-3092. doi: 10.1021/acs.accounts.4c00196. Epub 2024 Oct 7.
9
Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function.
Commun Chem. 2024 Sep 30;7(1):223. doi: 10.1038/s42004-024-01308-x.
10
Stem Life: A Framework for Understanding the Prebiotic-Biotic Transition.
J Mol Evol. 2024 Oct;92(5):539-549. doi: 10.1007/s00239-024-10201-z. Epub 2024 Sep 8.

本文引用的文献

1
The origin of the eukaryotic cell: a genomic investigation.
Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1420-5. doi: 10.1073/pnas.032658599. Epub 2002 Jan 22.
2
tRNAs in the spotlight during protein biosynthesis.
Trends Biochem Sci. 2001 Nov;26(11):653-6. doi: 10.1016/s0968-0004(01)01972-7.
3
Defining the core of nontransferable prokaryotic genes: the euryarchaeal core.
J Mol Evol. 2001 Oct-Nov;53(4-5):340-50. doi: 10.1007/s002390010224.
4
The origin of the eukaryotic cell.
Speculations Sci Technol. 1984;7(2):77-81.
5
Translation: in retrospect and prospect.
RNA. 2001 Aug;7(8):1055-67. doi: 10.1017/s1355838201010615.
6
Universal trees based on large combined protein sequence data sets.
Nat Genet. 2001 Jul;28(3):281-5. doi: 10.1038/90129.
8
Structural biology. The ribosome is a ribozyme.
Science. 2000 Aug 11;289(5481):878-9. doi: 10.1126/science.289.5481.878.
9
The structural basis of ribosome activity in peptide bond synthesis.
Science. 2000 Aug 11;289(5481):920-30. doi: 10.1126/science.289.5481.920.
10
Interpreting the universal phylogenetic tree.
Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8392-6. doi: 10.1073/pnas.97.15.8392.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验