Suppr超能文献

一种新型噬菌体编码的RNA聚合酶结合蛋白可抑制转录起始,并消除宿主RNA聚合酶的转录终止。

A novel bacteriophage-encoded RNA polymerase binding protein inhibits transcription initiation and abolishes transcription termination by host RNA polymerase.

作者信息

Nechaev Sergei, Yuzenkova Yulia, Niedziela-Majka Anita, Heyduk Tomasz, Severinov Konstantin

机构信息

Waksman Institute for Microbiology, Rutgers, The State University, Piscataway, NJ 08854, USA.

出版信息

J Mol Biol. 2002 Jun 28;320(1):11-22. doi: 10.1016/S0022-2836(02)00420-5.

Abstract

Xp10 is a lytic bacteriophage of Xanthomonas oryzae, a Gram-negative bacterium that causes rice blight. We purified an Xp10 protein, p7, that binds to and inhibits X. oryzae RNA polymerase (RNAP). P7 is a novel 73 amino acid-long protein; it does not bind to and hence does not affect transcription by Escherichia coli RNAP. Analysis of E. coli/X. oryzae RNAP hybrids locates the p7 binding site to the largest X. oryzae RNAP subunit, beta'. Binding of p7 to X. oryzae RNAP holoenzyme prevents large conformational change that places the sigma subunit region 4 into the correct position for interaction with the -35 promoter element. As a result, open promoter complex formation on the -10/-35 class promoters is inhibited. Inhibition of promoter complex formation on the extended -10 class promoters is less efficient. The p7 protein also abolishes factor-independent transcription termination by X. oryzae RNAP by preventing the release of nascent RNA at terminators. Further physiological and mechanistic studies of this novel transcription factor should provide additional insights into its biological role and the processes of promoter recognition and transcription termination.

摘要

Xp10是一种水稻白叶枯病菌(一种引起水稻白叶枯病的革兰氏阴性细菌)的裂解性噬菌体。我们纯化了一种Xp10蛋白p7,它能结合并抑制水稻白叶枯病菌RNA聚合酶(RNAP)。P7是一种新的由73个氨基酸组成的蛋白质;它不与大肠杆菌RNAP结合,因此不影响其转录。对大肠杆菌/水稻白叶枯病菌RNAP杂交体的分析将p7结合位点定位到水稻白叶枯病菌最大的RNAP亚基β'上。P7与水稻白叶枯病菌RNAP全酶的结合可防止σ亚基区域4发生大的构象变化,而该变化可使σ亚基区域4处于与-35启动子元件相互作用的正确位置。结果,-10/-35类启动子上开放启动子复合物的形成受到抑制。对延伸的-10类启动子上启动子复合物形成的抑制效率较低。P7蛋白还通过阻止新生RNA在终止子处的释放,消除了水稻白叶枯病菌RNAP的不依赖因子的转录终止。对这种新型转录因子的进一步生理和机制研究,应该能为其生物学作用以及启动子识别和转录终止过程提供更多见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验