Alexeeva Svetlana, Hellingwerf Klaas J, Teixeira de Mattos M Joost
Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands.
J Bacteriol. 2003 Jan;185(1):204-9. doi: 10.1128/JB.185.1.204-209.2003.
In Escherichia coli, the two-component regulatory ArcAB system functions as a major control system for the regulation of expression of genes encoding enzymes involved in both aerobic and anaerobic catabolic pathways. Previously, we have described the physiological response of wild-type E. coli to changes in oxygen availability through the complete range from anaerobiosis to full aerobiosis (S. Alexeeva, B. de Kort, G. Sawers, K. J. Hellingwerf, and M. J. Teixeira de Mattos, J. Bacteriol. 182:4934-4940, 2000, and S. Alexeeva, K. J. Hellingwerf, and M. J. Teixeira de Mattos, J. Bacteriol. 184:1402-1406, 2002). Here, we address the question of the contribution of the ArcAB-dependent transcriptional regulation to this response. Wild-type E. coli and a mutant lacking the ArcA regulator were grown in glucose-limited chemostat cultures at controlled levels of oxygen availability ranging from full aerobiosis to complete anaerobiosis. A flux analysis of the distribution of catabolic fluxes over parallel pathways was carried out, and the intracellular redox state (as reflected by the NADH/NAD ratio) was monitored for all steady states. Deletion of ArcA neither significantly altered the in vivo activity of the pyruvate dehydrogenase complex and pyruvate formate lyase nor significantly affected catabolism under fully aerobic and fully anaerobic conditions. In contrast, profound effects of the absence of ArcA were seen under conditions of oxygen-restricted growth: increased respiration, an altered electron flux distribution over the cytochrome o- and d-terminal oxidases, and a significant change in the intracellular redox state were observed. Thus, the ArcA regulator was found to exert major control on flux distribution, and it is concluded that the ArcAB system should be considered a microaerobic redox regulator.
在大肠杆菌中,双组分调控ArcAB系统作为一个主要控制系统,用于调节参与有氧和无氧分解代谢途径的酶编码基因的表达。此前,我们已经描述了野生型大肠杆菌在从无氧状态到完全有氧状态的整个氧气可利用范围内对氧气变化的生理反应(S. Alexeeva、B. de Kort、G. Sawers、K. J. Hellingwerf和M. J. Teixeira de Mattos,《细菌学杂志》182:4934 - 4940,2000年;以及S. Alexeeva、K. J. Hellingwerf和M. J. Teixeira de Mattos,《细菌学杂志》184:1402 - 1406,2002年)。在此,我们探讨ArcAB依赖性转录调控对这种反应的贡献问题。野生型大肠杆菌和缺乏ArcA调节因子的突变体在葡萄糖限制的恒化器培养物中生长,氧气可利用水平从完全有氧状态控制到完全无氧状态。对平行途径上分解代谢通量的分布进行了通量分析,并监测了所有稳态下的细胞内氧化还原状态(由NADH/NAD比值反映)。ArcA的缺失既没有显著改变丙酮酸脱氢酶复合物和丙酮酸甲酸裂解酶的体内活性,也没有在完全有氧和完全无氧条件下显著影响分解代谢。相比之下,在氧气限制生长条件下,ArcA缺失产生了深远影响:观察到呼吸增加、细胞色素o - 和d - 末端氧化酶上电子通量分布改变以及细胞内氧化还原状态的显著变化。因此,发现ArcA调节因子对通量分布发挥主要控制作用,得出的结论是ArcAB系统应被视为微需氧氧化还原调节因子。