Suppr超能文献

肌动蛋白丝聚合调节顶复门寄生虫的滑行运动。

Actin filament polymerization regulates gliding motility by apicomplexan parasites.

作者信息

Wetzel D M, Håkansson S, Hu K, Roos D, Sibley L D

机构信息

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Mol Biol Cell. 2003 Feb;14(2):396-406. doi: 10.1091/mbc.e02-08-0458.

Abstract

Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa.

摘要

刚地弓形虫进入宿主细胞关键取决于寄生虫中的肌动蛋白丝,但矛盾的是,其肌动蛋白几乎完全是单体形式。与传统样本中缺乏稳定的肌动蛋白丝不同,快速冷冻电子显微镜显示,在滑行寄生虫的质膜下方形成了肌动蛋白丝。为了研究肌动蛋白丝在运动中的作用,我们用肌动蛋白丝稳定药物茉莉酮酸内酯(JAS)处理寄生虫,并使用黄色荧光蛋白(YFP)标记的肌动蛋白监测活细胞和固定细胞中肌动蛋白的分布。JAS处理导致YFP标记的肌动蛋白重新分布到顶端和后端,在那里肌动蛋白丝形成了一种螺旋模式,覆盖着质膜。尽管先前的研究表明JAS会诱导僵直,但视频显微镜显示,JAS处理使寄生虫的滑行速度提高了约三倍,这表明肌动蛋白丝是运动速度的限制因素。然而,JAS也经常使正常的运动方向反转,破坏向前迁移和细胞进入。与这种改变一致,JAS处理的寄生虫皮层下的肌动蛋白丝呈缠结斑块状,而不是在对照细胞中观察到的笔直、大致平行的排列方向。这些研究表明,肌动蛋白丝精确控制的聚合作用赋予了顶复门寄生虫滑行运动正确的时间、持续时间和方向性。

相似文献

1
Actin filament polymerization regulates gliding motility by apicomplexan parasites.
Mol Biol Cell. 2003 Feb;14(2):396-406. doi: 10.1091/mbc.e02-08-0458.
2
Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.
PLoS Pathog. 2011 Oct;7(10):e1002280. doi: 10.1371/journal.ppat.1002280. Epub 2011 Oct 6.
3
Actin depolymerizing factor controls actin turnover and gliding motility in Toxoplasma gondii.
Mol Biol Cell. 2011 Apr 15;22(8):1290-9. doi: 10.1091/mbc.E10-12-0939. Epub 2011 Feb 23.
4
Unusual kinetic and structural properties control rapid assembly and turnover of actin in the parasite Toxoplasma gondii.
Mol Biol Cell. 2006 Feb;17(2):895-906. doi: 10.1091/mbc.e05-06-0512. Epub 2005 Nov 30.
5
Near-atomic structure of jasplakinolide-stabilized malaria parasite F-actin reveals the structural basis of filament instability.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10636-10641. doi: 10.1073/pnas.1707506114. Epub 2017 Sep 18.
6
Malaria parasite actin polymerization and filament structure.
J Biol Chem. 2010 Nov 19;285(47):36577-85. doi: 10.1074/jbc.M110.142638. Epub 2010 Sep 7.
9
Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin.
J Biol Chem. 2010 Feb 26;285(9):6835-47. doi: 10.1074/jbc.M109.068155. Epub 2009 Dec 30.

引用本文的文献

1
Emergent actin flows explain distinct modes of gliding motility.
Nat Phys. 2024;20(12):1989-1996. doi: 10.1038/s41567-024-02652-4. Epub 2024 Oct 8.
2
Kinase function of TgTKL1 is essential for its role in propagation and pathogenesis.
mSphere. 2024 Nov 21;9(11):e0077924. doi: 10.1128/msphere.00779-24. Epub 2024 Oct 30.
3
Using machine learning to dissect host kinases required for Leishmania internalization and development.
Mol Biochem Parasitol. 2024 Dec;260:111651. doi: 10.1016/j.molbiopara.2024.111651. Epub 2024 Aug 22.
4
A Multi-Color Immunofluorescence Assay to Distinguish Intracellular From External Parasites.
Bio Protoc. 2024 Jun 5;14(11):e5009. doi: 10.21769/BioProtoc.5009.
5
Using machine learning to dissect host kinases required for internalization and development.
bioRxiv. 2024 Aug 4:2024.05.16.593986. doi: 10.1101/2024.05.16.593986.
6
MAPK/ERK activation in macrophages promotes Leishmania internalization and pathogenesis.
Microbes Infect. 2024 Jul-Aug;26(5-6):105353. doi: 10.1016/j.micinf.2024.105353. Epub 2024 May 17.
7
The cortical microtubules of Toxoplasma gondii underlie the helicity of parasite movement.
J Cell Sci. 2023 Sep 1;136(17). doi: 10.1242/jcs.261270. Epub 2023 Sep 7.
9
Src- and Abl-family kinases activate spleen tyrosine kinase to maximize phagocytosis and Leishmania infection.
J Cell Sci. 2023 Jul 15;136(14). doi: 10.1242/jcs.260809. Epub 2023 Jul 28.
10
Cryo-tomography reveals rigid-body motion and organization of apicomplexan invasion machinery.
Nat Commun. 2023 Mar 30;14(1):1775. doi: 10.1038/s41467-023-37327-w.

本文引用的文献

1
Cell motility of sporozoan protozoa.
Parasitol Today. 1988 Nov;4(11):315-9. doi: 10.1016/0169-4758(88)90113-5.
2
Transepithelial migration of Toxoplasma gondii is linked to parasite motility and virulence.
J Exp Med. 2002 Jun 17;195(12):1625-33. doi: 10.1084/jem.20020258.
3
4
Cytoskeleton of apicomplexan parasites.
Microbiol Mol Biol Rev. 2002 Mar;66(1):21-38; table of contents. doi: 10.1128/MMBR.66.1.21-38.2002.
5
Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii.
J Cell Sci. 2002 Mar 1;115(Pt 5):1017-25. doi: 10.1242/jcs.115.5.1017.
6
Characterization of the subpellicular network, a filamentous membrane skeletal component in the parasite Toxoplasma gondii.
Mol Biochem Parasitol. 2001 Jul;115(2):257-68. doi: 10.1016/s0166-6851(01)00289-4.
7
Gliding motility and cell invasion by Apicomplexa: insights from the Plasmodium sporozoite.
Cell Microbiol. 2001 Feb;3(2):63-73. doi: 10.1046/j.1462-5822.2001.00097.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验