Suppr超能文献

膜变薄效应作为肽诱导孔形成机制的证据。

Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation.

作者信息

Chen Fang-Yu, Lee Ming-Tao, Huang Huey W

机构信息

Department of Physics, National Central University, Chung-Li, Taiwan 32054, ROC.

出版信息

Biophys J. 2003 Jun;84(6):3751-8. doi: 10.1016/S0006-3495(03)75103-0.

Abstract

Antimicrobial peptides have two binding states in a lipid bilayer, a surface state S and a pore-forming state I. The transition from the S state to the I state has a sigmoidal peptide-concentration dependence indicating cooperativity in the peptide-membrane interactions. In a previous paper, we reported the transition of alamethicin measured in three bilayer conditions. The data were explained by a free energy that took into account the membrane thinning effect induced by the peptides. In this paper, the full implications of the free energy were tested by including another type of peptide, melittin, that forms toroidal pores, instead of barrel-stave pores as in the case of alamethicin. The S-to-I transitions were measured by oriented circular dichroism. The membrane thinning effect was measured by x-ray diffraction. All data were in good agreement with the theory, indicating that the membrane thinning effect is a plausible mechanism for the peptide-induced pore formations.

摘要

抗菌肽在脂质双层中有两种结合状态,即表面状态S和形成孔的状态I。从S状态到I状态的转变具有S形的肽浓度依赖性,表明肽与膜相互作用中存在协同性。在之前的一篇论文中,我们报道了在三种双层条件下测量的阿拉米辛的转变。这些数据通过考虑肽诱导的膜变薄效应的自由能来解释。在本文中,通过纳入另一种肽——蜂毒肽,对自由能的全部影响进行了测试,蜂毒肽形成的是环形孔,而不像阿拉米辛那样形成桶状孔。通过取向圆二色性测量S到I的转变。通过X射线衍射测量膜变薄效应。所有数据与理论高度吻合,表明膜变薄效应是肽诱导形成孔的一种合理机制。

相似文献

1
Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation.
Biophys J. 2003 Jun;84(6):3751-8. doi: 10.1016/S0006-3495(03)75103-0.
2
Many-body effect of antimicrobial peptides: on the correlation between lipid's spontaneous curvature and pore formation.
Biophys J. 2005 Dec;89(6):4006-16. doi: 10.1529/biophysj.105.068080. Epub 2005 Sep 8.
3
Energetics of pore formation induced by membrane active peptides.
Biochemistry. 2004 Mar 30;43(12):3590-9. doi: 10.1021/bi036153r.
4
Antimicrobial peptides in toroidal and cylindrical pores.
Biochim Biophys Acta. 2010 Aug;1798(8):1485-93. doi: 10.1016/j.bbamem.2010.04.004. Epub 2010 Apr 18.
5
Barrel-stave model or toroidal model? A case study on melittin pores.
Biophys J. 2001 Sep;81(3):1475-85. doi: 10.1016/S0006-3495(01)75802-X.
6
Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity.
Biophys J. 2006 Nov 1;91(9):3285-300. doi: 10.1529/biophysj.106.090118. Epub 2006 Aug 18.
7
Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering.
Biochim Biophys Acta. 2013 Feb;1828(2):528-34. doi: 10.1016/j.bbamem.2012.10.027. Epub 2012 Nov 1.
8
Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides.
Biochim Biophys Acta. 2012 May;1818(5):1274-83. doi: 10.1016/j.bbamem.2012.01.016. Epub 2012 Jan 25.
9
Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
Biophys J. 2003 Apr;84(4):2242-55. doi: 10.1016/S0006-3495(03)75030-9.
10
Toroidal pores formed by antimicrobial peptides show significant disorder.
Biochim Biophys Acta. 2008 Oct;1778(10):2308-17. doi: 10.1016/j.bbamem.2008.06.007. Epub 2008 Jun 18.

引用本文的文献

1
Poly-Arginine Tails and Helical Segments of Natural Antimicrobial Peptides Display Concerted Action at Membranes for Enhanced Antimicrobial Effects.
ACS Bio Med Chem Au. 2025 Jul 8;5(4):706-725. doi: 10.1021/acsbiomedchemau.5c00084. eCollection 2025 Aug 20.
3
How Unnatural Amino Acids in Antimicrobial Peptides Change Interactions with Lipid Model Membranes.
J Phys Chem B. 2024 Oct 10;128(40):9772-9784. doi: 10.1021/acs.jpcb.4c04152. Epub 2024 Sep 27.
5
Novel non-helical antimicrobial peptides insert into and fuse lipid model membranes.
Soft Matter. 2024 May 22;20(20):4088-4101. doi: 10.1039/d4sm00220b.
7
Alteration of Average Thickness of Lipid Bilayer by Membrane-Deforming Inclusions.
Biomolecules. 2023 Nov 30;13(12):1731. doi: 10.3390/biom13121731.
8
Effect of CM15 on Supported Lipid Bilayer Probed by Atomic Force Microscopy.
Membranes (Basel). 2023 Oct 28;13(11):864. doi: 10.3390/membranes13110864.
9
Mechanistic Insight into the Early Stages of Toroidal Pore Formation by the Antimicrobial Peptide Smp24.
Pharmaceutics. 2023 Sep 28;15(10):2399. doi: 10.3390/pharmaceutics15102399.
10
The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation.
J Membr Biol. 2023 Dec;256(4-6):343-372. doi: 10.1007/s00232-023-00289-7. Epub 2023 Aug 31.

本文引用的文献

1
Lipid-alamethicin interactions influence alamethicin orientation.
Biophys J. 1991 Nov;60(5):1079-87. doi: 10.1016/S0006-3495(91)82144-0.
2
Two states of cyclic antimicrobial peptide RTD-1 in lipid bilayers.
Biochemistry. 2002 Aug 6;41(31):10070-6. doi: 10.1021/bi025853d.
3
Antimicrobial peptides of multicellular organisms.
Nature. 2002 Jan 24;415(6870):389-95. doi: 10.1038/415389a.
4
Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin.
Biophys J. 2002 Feb;82(2):908-14. doi: 10.1016/S0006-3495(02)75452-0.
5
Barrel-stave model or toroidal model? A case study on melittin pores.
Biophys J. 2001 Sep;81(3):1475-85. doi: 10.1016/S0006-3495(01)75802-X.
6
Structure of lipid bilayers.
Biochim Biophys Acta. 2000 Nov 10;1469(3):159-95. doi: 10.1016/s0304-4157(00)00016-2.
7
Order-disorder transition in bilayers of diphytanoyl phosphatidylcholine.
Biochim Biophys Acta. 2000 Jul 31;1467(1):198-206. doi: 10.1016/s0005-2736(00)00221-2.
8
Action of antimicrobial peptides: two-state model.
Biochemistry. 2000 Jul 25;39(29):8347-52. doi: 10.1021/bi000946l.
9
Effect of chain length and unsaturation on elasticity of lipid bilayers.
Biophys J. 2000 Jul;79(1):328-39. doi: 10.1016/S0006-3495(00)76295-3.
10
Membrane thinning effect of the beta-sheet antimicrobial protegrin.
Biochemistry. 2000 Jan 11;39(1):139-45. doi: 10.1021/bi991892m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验