Zwingmann Claudia, Leibfritz Dieter, Hazell Alan S
Department of Medicine, Hôpital Saint-Luc (CHUM), University of Montreal, Montreal, Quebec, Canada.
J Cereb Blood Flow Metab. 2003 Jun;23(6):756-71. doi: 10.1097/01.WCB.0000056062.25434.4D.
A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.
锰神经毒性的一个核心问题涉及线粒体功能障碍导致脑能量衰竭。为深入了解其潜在机制,作者通过高分辨率多核磁共振波谱研究了[1-13C]葡萄糖代谢的细胞特异性途径。用100微摩尔/升氯化锰对神经元进行为期五天的处理,分别导致ATP/ADP和磷酸肌酸-肌酸比值降低50%和70%。[1-13C]葡萄糖通过丙酮酸脱氢酶的通量受损,这与三羧酸循环抑制相关,进而导致[4-13C]谷氨酸、[2-13C]γ-氨基丁酸和[13C]谷胱甘肽耗竭,阻碍了神经元通过氧化葡萄糖代谢来补偿线粒体功能障碍的能力,并进一步加重了神经元能量衰竭。刺激的糖酵解和氧化葡萄糖代谢保护星形胶质细胞免受能量衰竭和氧化应激,导致[3-13C]乳酸的从头合成增加两倍,[4-13C]谷氨酸和[13C]谷胱甘肽水平升高四倍。然而,锰抑制了谷氨酰胺的合成和释放。从共培养物中获得的比较核磁共振数据显示星形胶质细胞功能紊乱,且星形胶质细胞无法为神经元提供能量和神经递质代谢的底物,导致神经元抗氧化能力(谷胱甘肽水平降低)和能量代谢恶化。结果表明,与神经元葡萄糖氧化受损同时发生的是,星形胶质细胞代谢的变化可能导致细胞间稳态平衡的丧失,从而导致锰神经毒性中的神经元功能障碍。