del Re Elisabetta, Babitt Jodie L, Pirani Alnoor, Schneyer Alan L, Lin Herbert Y
Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charleston, Massachusetts 02129, USA.
J Biol Chem. 2004 May 21;279(21):22765-72. doi: 10.1074/jbc.M401350200. Epub 2004 Mar 2.
Transforming growth factor beta (TGF-beta) ligands exert their biological effects through type II (TbetaRII) and type I receptors (TbetaRI). Unlike TGF-beta1 and -beta3, TGF-beta2 appears to require the co-receptor betaglycan (type III receptor, TbetaRIII) for high affinity binding and signaling. Recently, the TbetaRIII null mouse was generated and revealed significant non-overlapping phenotypes with the TGF-beta2 null mouse, implying the existence of TbetaRIII independent mechanisms for TGF-beta2 signaling. Because a variant of the type II receptor, the type II-B receptor (TbetaRII-B), has been suggested to mediate TGF-beta2 signaling in the absence of TbetaRIII, we directly tested the ability of TbetaRII-B to bind TGF-beta2. Here we show that the soluble extracellular domain of the type II-B receptor (sTbetaRII-B.Fc) bound TGF-beta1 and TGF-beta3 with high affinity (K(d) values = 31.7 +/- 22.8 and 74.6 +/- 15.8 pm, respectively), but TGF-beta2 binding was undetectable at corresponding doses. Similar results were obtained for the soluble type II receptor (sTbetaRII.Fc). However, sTbetaRII.Fc or sTbetaRII-B.Fc in combination with soluble type I receptor (sTbetaRI.Fc) formed a high affinity complex that bound TGF-beta2, and this complex inhibited TGF-beta2 in a biological inhibition assay. These results show that TGF-beta2 has the potential to signal in the absence of TbetaRIII when sufficient TGF-beta2, TbetaRI, and TbetaRII or TbetaRII-B are present. Our data also support a cooperative model for receptor-ligand interactions, as has been suggested by crystallization studies of TGF-beta receptors and ligands. Our cell-free binding assay system will allow for testing of models of receptor-ligand complexes prior to actual solution of crystal structures.
转化生长因子β(TGF-β)配体通过II型受体(TβRII)和I型受体(TβRI)发挥其生物学效应。与TGF-β1和-β3不同,TGF-β2似乎需要共受体β聚糖(III型受体,TβRIII)才能进行高亲和力结合和信号传导。最近,产生了TβRIII基因敲除小鼠,其表现出与TGF-β2基因敲除小鼠显著不同的非重叠表型,这意味着存在TGF-β2信号传导的TβRIII非依赖性机制。由于II型受体的一种变体,即II-B型受体(TβRII-B),被认为在不存在TβRIII的情况下介导TGF-β2信号传导,我们直接测试了TβRII-B结合TGF-β2的能力。在这里我们表明,II-B型受体的可溶性细胞外结构域(sTβRII-B.Fc)与TGF-β1和TGF-β3具有高亲和力结合(K(d)值分别为31.7±22.8和74.6±15.8皮摩尔),但在相应剂量下未检测到TGF-β2结合。可溶性II型受体(sTβRII.Fc)也得到了类似结果。然而,sTβRII.Fc或sTβRII-B.Fc与可溶性I型受体(sTβRI.Fc)结合形成了一种高亲和力复合物,该复合物能结合TGF-β2,并且这种复合物在生物学抑制试验中抑制了TGF-β2。这些结果表明,当存在足够的TGF-β2、TβRI以及TβRII或TβRII-B时,TGF-β2在不存在TβRIII的情况下具有信号传导的潜力。我们的数据还支持受体-配体相互作用的协同模型,正如TGF-β受体和配体的结晶研究所表明的那样。我们的无细胞结合测定系统将允许在实际解析晶体结构之前测试受体-配体复合物模型。