Valdivia Carmen R, Tester David J, Rok Benjamin A, Porter Co-Burn J, Munger Thomas M, Jahangir Arshad, Makielski Jonathan C, Ackerman Michael J
Department of Medicine and Physiology, University of Wisconsin, Madison, WI, USA.
Cardiovasc Res. 2004 Apr 1;62(1):53-62. doi: 10.1016/j.cardiores.2004.01.022.
The human cardiac SCN5A gene encodes for the alpha subunit of the human cardiac voltage-dependent sodium channel hNav1.5 [Neuron 28 (2) (2000) 365] and carries inward Na current (INa). Mutations in SCN5A cause arrhythmia syndromes including Brugada syndrome (BrS) and congenital long QT syndrome subtype 3 (LQT3). Here, we report a trafficking defective BrS-causing SCN5A mutation that was drug-rescued.
A 14-year-old Caucasian male was diagnosed with BrS with typical ECG pattern for BrS and ventricular fibrillation was easily induced. He also had significant HV interval delay ( approximately 65 ms) and high (31 J) defibrillation thresholds (DFTs). Genomic analysis revealed the SCN5A mutation (G1743R). We engineered G1743R into the cardiac Na channel and transfected HEK-293 cells for functional studies. The mutant channel yielded nearly undetectable sodium channel currents. Coexpression with the beta1 subunit, or incubation at low temperature did not increase current density. However, mexiletine, a sodium channel blocker, increased current density 93-fold in G1743R, but only twofold in WT.
This study identifies an expression-defective BrS mutation in SCN5A with pharmacological rescue. The profoundly decreased sodium current associated with the G1743R suggests a molecular basis for the delayed His-Purkinje conduction and elevated DFTs observed in the proband. Whether the mutant channel may be rescued in vivo by mexiletine and normalize the patient's electrophysiologic parameters remains to be tested.
人类心脏SCN5A基因编码人类心脏电压依赖性钠通道hNav1.5的α亚基[《神经元》28(2)(2000)365],并携带内向钠电流(INa)。SCN5A突变会导致心律失常综合征,包括Brugada综合征(BrS)和先天性长QT综合征3型(LQT3)。在此,我们报告了一种导致BrS的SCN5A突变,其存在转运缺陷且可被药物挽救。
一名14岁的白种男性被诊断为BrS,具有典型的BrS心电图模式,且易诱发室颤。他还存在明显的希氏束-浦肯野间期延迟(约65毫秒)和较高的(31焦耳)除颤阈值(DFTs)。基因组分析揭示了SCN5A突变(G1743R)。我们将G1743R引入心脏钠通道并转染HEK-293细胞进行功能研究。突变通道产生的钠通道电流几乎检测不到。与β1亚基共表达或在低温下孵育均未增加电流密度。然而,钠通道阻滞剂美西律使G1743R的电流密度增加了93倍,而在野生型中仅增加了两倍。
本研究鉴定出一种具有药理学挽救作用的SCN5A表达缺陷型BrS突变。与G1743R相关的钠电流显著降低提示了先证者中观察到的希氏束-浦肯野传导延迟和除颤阈值升高的分子基础。突变通道是否可在体内被美西律挽救并使患者的电生理参数正常化仍有待测试。