Phair Robert D, Scaffidi Paola, Elbi Cem, Vecerová Jaromíra, Dey Anup, Ozato Keiko, Brown David T, Hager Gordon, Bustin Michael, Misteli Tom
BioInformatics Services, Rockville, MD 20854, USA.
Mol Cell Biol. 2004 Jul;24(14):6393-402. doi: 10.1128/MCB.24.14.6393-6402.2004.
Genome structure and gene expression depend on a multitude of chromatin-binding proteins. The binding properties of these proteins to native chromatin in intact cells are largely unknown. Here, we describe an approach based on combined in vivo photobleaching microscopy and kinetic modeling to analyze globally the dynamics of binding of chromatin-associated proteins in living cells. We have quantitatively determined basic biophysical properties, such as off rate constants, residence time, and bound fraction, of a wide range of chromatin proteins of diverse functions in vivo. We demonstrate that most chromatin proteins have a high turnover on chromatin with a residence time on the order of seconds, that the major fraction of each protein is bound to chromatin at steady state, and that transient binding is a common property of chromatin-associated proteins. Our results indicate that chromatin-binding proteins find their binding sites by three-dimensional scanning of the genome space and our data are consistent with a model in which chromatin-associated proteins form dynamic interaction networks in vivo. We suggest that these properties are crucial for generating high plasticity in genome expression.
基因组结构和基因表达依赖于众多与染色质结合的蛋白质。这些蛋白质与完整细胞中天然染色质的结合特性在很大程度上尚不清楚。在此,我们描述了一种基于体内光漂白显微镜和动力学建模相结合的方法,以全局分析活细胞中染色质相关蛋白质的结合动力学。我们已经定量测定了体内多种功能各异的染色质蛋白质的基本生物物理特性,如解离速率常数、驻留时间和结合分数。我们证明,大多数染色质蛋白质在染色质上具有高周转率,驻留时间约为几秒,每种蛋白质的主要部分在稳态下与染色质结合,并且瞬时结合是染色质相关蛋白质的共同特性。我们的结果表明,染色质结合蛋白通过对基因组空间进行三维扫描来找到它们的结合位点,我们的数据与染色质相关蛋白质在体内形成动态相互作用网络的模型一致。我们认为这些特性对于在基因组表达中产生高可塑性至关重要。