Suppr超能文献

体内动态蛋白质-染色质相互作用的全局性质:染色质蛋白质的三维基因组扫描及动态相互作用网络

Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins.

作者信息

Phair Robert D, Scaffidi Paola, Elbi Cem, Vecerová Jaromíra, Dey Anup, Ozato Keiko, Brown David T, Hager Gordon, Bustin Michael, Misteli Tom

机构信息

BioInformatics Services, Rockville, MD 20854, USA.

出版信息

Mol Cell Biol. 2004 Jul;24(14):6393-402. doi: 10.1128/MCB.24.14.6393-6402.2004.

Abstract

Genome structure and gene expression depend on a multitude of chromatin-binding proteins. The binding properties of these proteins to native chromatin in intact cells are largely unknown. Here, we describe an approach based on combined in vivo photobleaching microscopy and kinetic modeling to analyze globally the dynamics of binding of chromatin-associated proteins in living cells. We have quantitatively determined basic biophysical properties, such as off rate constants, residence time, and bound fraction, of a wide range of chromatin proteins of diverse functions in vivo. We demonstrate that most chromatin proteins have a high turnover on chromatin with a residence time on the order of seconds, that the major fraction of each protein is bound to chromatin at steady state, and that transient binding is a common property of chromatin-associated proteins. Our results indicate that chromatin-binding proteins find their binding sites by three-dimensional scanning of the genome space and our data are consistent with a model in which chromatin-associated proteins form dynamic interaction networks in vivo. We suggest that these properties are crucial for generating high plasticity in genome expression.

摘要

基因组结构和基因表达依赖于众多与染色质结合的蛋白质。这些蛋白质与完整细胞中天然染色质的结合特性在很大程度上尚不清楚。在此,我们描述了一种基于体内光漂白显微镜和动力学建模相结合的方法,以全局分析活细胞中染色质相关蛋白质的结合动力学。我们已经定量测定了体内多种功能各异的染色质蛋白质的基本生物物理特性,如解离速率常数、驻留时间和结合分数。我们证明,大多数染色质蛋白质在染色质上具有高周转率,驻留时间约为几秒,每种蛋白质的主要部分在稳态下与染色质结合,并且瞬时结合是染色质相关蛋白质的共同特性。我们的结果表明,染色质结合蛋白通过对基因组空间进行三维扫描来找到它们的结合位点,我们的数据与染色质相关蛋白质在体内形成动态相互作用网络的模型一致。我们认为这些特性对于在基因组表达中产生高可塑性至关重要。

相似文献

3
Dynamic binding of histone H1 to chromatin in living cells.
Nature. 2000 Dec 14;408(6814):877-81. doi: 10.1038/35048610.
4
Cdt1 associates dynamically with chromatin throughout G1 and recruits Geminin onto chromatin.
EMBO J. 2007 Mar 7;26(5):1303-14. doi: 10.1038/sj.emboj.7601597. Epub 2007 Feb 22.
5
Measuring the dynamics of chromatin proteins during differentiation.
Methods Mol Biol. 2013;1042:173-80. doi: 10.1007/978-1-62703-526-2_12.
6
The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity.
Exp Cell Res. 2009 Dec 10;315(20):3554-62. doi: 10.1016/j.yexcr.2009.07.022. Epub 2009 Aug 6.
7
Identification of novel chromatin-associated proteins involved in programmed genome rearrangements in Tetrahymena.
J Cell Sci. 2007 Jun 15;120(Pt 12):1978-89. doi: 10.1242/jcs.006502. Epub 2007 May 22.
9
The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8758-63. doi: 10.1073/pnas.1433065100. Epub 2003 Jul 2.
10
Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC.
J Cell Sci. 2008 Sep 1;121(Pt 17):2850-9. doi: 10.1242/jcs.031708. Epub 2008 Aug 5.

引用本文的文献

2
Mechanisms driving functional divergence of transcription factor paralogs.
New Phytol. 2025 Sep;247(5):2022-2033. doi: 10.1111/nph.70309. Epub 2025 Jun 19.
3
Osmotic stress induces formation of both liquid condensates and amyloids by a yeast prion domain.
J Biol Chem. 2024 Oct;300(10):107766. doi: 10.1016/j.jbc.2024.107766. Epub 2024 Sep 12.
4
Transcriptional silencing in Saccharomyces cerevisiae: known unknowns.
Epigenetics Chromatin. 2024 Sep 14;17(1):28. doi: 10.1186/s13072-024-00553-7.
8
Changing course: Glucose starvation drives nuclear accumulation of Hexokinase 2 in S. cerevisiae.
PLoS Genet. 2023 May 17;19(5):e1010745. doi: 10.1371/journal.pgen.1010745. eCollection 2023 May.
9
Evidence for low nanocompaction of heterochromatin in living embryonic stem cells.
EMBO J. 2023 Jun 15;42(12):e110286. doi: 10.15252/embj.2021110286. Epub 2023 Apr 21.
10
Omics Views of Mechanisms for Cell Fate Determination in Early Mammalian Development.
Genomics Proteomics Bioinformatics. 2023 Oct;21(5):950-961. doi: 10.1016/j.gpb.2023.03.001. Epub 2023 Apr 17.

本文引用的文献

1
Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin.
Mol Cell Biol. 2004 May;24(10):4321-8. doi: 10.1128/MCB.24.10.4321-4328.2004.
2
Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling.
Mol Cell. 2004 Apr 23;14(2):163-74. doi: 10.1016/s1097-2765(04)00178-9.
3
In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin.
Mol Cell Biol. 2004 Apr;24(8):3157-67. doi: 10.1128/MCB.24.8.3157-3167.2004.
5
Molecular chaperones function as steroid receptor nuclear mobility factors.
Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2876-81. doi: 10.1073/pnas.0400116101. Epub 2004 Feb 20.
6
Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy.
Methods Enzymol. 2004;375:393-414. doi: 10.1016/s0076-6879(03)75025-3.
7
The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8758-63. doi: 10.1073/pnas.1433065100. Epub 2003 Jul 2.
8
Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity.
Mol Cell Biol. 2003 Mar;23(6):1922-34. doi: 10.1128/MCB.23.6.1922-1934.2003.
9
Maintenance of stable heterochromatin domains by dynamic HP1 binding.
Science. 2003 Jan 31;299(5607):721-5. doi: 10.1126/science.1078572.
10
Modulation of heterochromatin protein 1 dynamics in primary Mammalian cells.
Science. 2003 Jan 31;299(5607):719-21. doi: 10.1126/science.1078694.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验