Suppr超能文献

Claudin 11基因敲除小鼠的耳聋揭示了基底细胞紧密连接对血管纹功能的关键作用。

Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function.

作者信息

Gow Alexander, Davies Caroline, Southwood Cherie M, Frolenkov Gregory, Chrustowski Mark, Ng Lily, Yamauchi Daisuke, Marcus Daniel C, Kachar Bechara

机构信息

Center for Molecular Medicine and Genetics, Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, Michigan 48201, USA.

出版信息

J Neurosci. 2004 Aug 11;24(32):7051-62. doi: 10.1523/JNEUROSCI.1640-04.2004.

Abstract

Generation of a strong electrical potential in the cochlea is uniquely mammalian and may reflect recent evolutionary advances in cellular voltage-dependent amplifiers. This endocochlear potential is hypothesized to dramatically improve hearing sensitivity, a concept that is difficult to explore experimentally, because manipulating cochlear function frequently causes rapid degenerative changes early in development. Here, we examine the deafness phenotype in adult Claudin 11-null mice, which lack the basal cell tight junctions that give rise to the intrastrial compartment and find little evidence of cochlear pathology. Potassium ion recycling is normal in these mutants, but endocochlear potentials were below 30 mV and hearing thresholds were elevated 50 dB sound pressure level across the frequency spectrum. Together, these data demonstrate the central importance of basal cell tight junctions in the stria vascularis and directly verify the two-cell hypothesis for generation of endocochlear potential. Furthermore, these data indicate that endocochlear potential is an essential component of the power source for the mammalian cochlear amplifier.

摘要

在耳蜗中产生强电势是哺乳动物独有的特征,这可能反映了细胞电压依赖性放大器最近的进化进展。这种内淋巴电位被认为能显著提高听力灵敏度,这一概念很难通过实验进行探究,因为操纵耳蜗功能常常会在发育早期导致快速的退行性变化。在这里,我们研究了成年Claudin 11基因敲除小鼠的耳聋表型,这些小鼠缺乏形成血管纹内间隔的基底细胞紧密连接,并且几乎没有发现耳蜗病理学证据。这些突变体中的钾离子循环正常,但内淋巴电位低于30 mV,并且在整个频谱上听力阈值提高了50 dB声压级。这些数据共同证明了基底细胞紧密连接在血管纹中的核心重要性,并直接验证了内淋巴电位产生的双细胞假说。此外,这些数据表明内淋巴电位是哺乳动物耳蜗放大器电源的重要组成部分。

相似文献

3
Claudins in the tight junctions of stria vascularis marginal cells.
Biochem Biophys Res Commun. 2003 Apr 25;304(1):5-10. doi: 10.1016/s0006-291x(03)00498-4.
5
Spatiotemporal loss of K+ transport proteins in the developing cochlear lateral wall of guinea pigs with hereditary deafness.
Eur J Neurosci. 2008 Jan;27(1):145-54. doi: 10.1111/j.1460-9568.2007.05994.x. Epub 2007 Dec 17.
7
LRRC8/VRAC volume-regulated anion channels are crucial for hearing.
J Biol Chem. 2024 Jul;300(7):107436. doi: 10.1016/j.jbc.2024.107436. Epub 2024 Jun 4.
9
Deafness in LIMP2-deficient mice due to early loss of the potassium channel KCNQ1/KCNE1 in marginal cells of the stria vascularis.
J Physiol. 2006 Oct 1;576(Pt 1):73-86. doi: 10.1113/jphysiol.2006.116889. Epub 2006 Aug 10.
10
KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
Am J Physiol Cell Physiol. 2002 Feb;282(2):C403-7. doi: 10.1152/ajpcell.00312.2001.

引用本文的文献

1
The Blood-Labyrinth Barrier: Non-Invasive Delivery Strategies for Inner Ear Drug Delivery.
Pharmaceutics. 2025 Apr 7;17(4):482. doi: 10.3390/pharmaceutics17040482.
2
is essential for marginal cell differentiation and stria vascularis formation.
Front Cell Dev Biol. 2025 Mar 5;13:1537505. doi: 10.3389/fcell.2025.1537505. eCollection 2025.
4
GSDMD-mediated mitochondrial dysfunction in marginal cells: A potential driver of inflammation and stria vascularis damage in CIHL.
Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2415805122. doi: 10.1073/pnas.2415805122. Epub 2025 Mar 11.
5
Molecular differences between young and mature stria vascularis from organotypic explants and transcriptomics.
iScience. 2025 Jan 17;28(2):111832. doi: 10.1016/j.isci.2025.111832. eCollection 2025 Feb 21.
6
Rescue of cochlear vascular pathology prevents sensory hair cell loss in Norrie disease.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2322124121. doi: 10.1073/pnas.2322124121. Epub 2024 Nov 25.
8
Pharmacological Approaches to Hearing Loss.
Pharmacol Rev. 2024 Oct 16;76(6):1063-1088. doi: 10.1124/pharmrev.124.001195.
10
Biophysics of claudin proteins in tight junction architecture: Three decades of progress.
Biophys J. 2024 Aug 20;123(16):2363-2378. doi: 10.1016/j.bpj.2024.06.010. Epub 2024 Jun 10.

本文引用的文献

2
Resting potentials inside the cochlear partition of the guinea pig.
Nature. 1952 Feb 9;169(4293):241-2. doi: 10.1038/169241a0.
3
New tunes from Corti's organ: the outer hair cell boogie rules.
Curr Opin Neurobiol. 2003 Aug;13(4):459-68. doi: 10.1016/s0959-4388(03)00100-4.
4
Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice.
J Cell Biol. 2003 May 12;161(3):653-60. doi: 10.1083/jcb.200302070.
5
Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss.
Hum Mol Genet. 2003 May 15;12(10):1155-62. doi: 10.1093/hmg/ddg127.
6
The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease.
Neuron. 2002 Nov 14;36(4):585-96. doi: 10.1016/s0896-6273(02)01045-0.
7
Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier.
Nature. 2002 Sep 19;419(6904):300-4. doi: 10.1038/nature01059. Epub 2002 Aug 28.
8
Mouse models for human deafness: current tools for new fashions.
Trends Mol Med. 2002 Sep;8(9):447-51. doi: 10.1016/s1471-4914(02)02388-2.
9
K+ cycling and the endocochlear potential.
Hear Res. 2002 Mar;165(1-2):1-9. doi: 10.1016/s0378-5955(02)00279-4.
10
KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential.
Am J Physiol Cell Physiol. 2002 Feb;282(2):C403-7. doi: 10.1152/ajpcell.00312.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验