Suppr超能文献

用神经贝叶斯方法改进Cox生存分析。

Improving Cox survival analysis with a neural-Bayesian approach.

作者信息

Bakker Bart, Heskes Tom, Neijt Jan, Kappen Bert

机构信息

Theoretical Foundation SNN Laboratory, University of Nijmegen, Geert Grooteplein 21, 6525 EZ Nijmegen, The Netherlands.

出版信息

Stat Med. 2004 Oct 15;23(19):2989-3012. doi: 10.1002/sim.1904.

Abstract

In this article we show that traditional Cox survival analysis can be improved upon when supplemented with sensible priors and analysed within a neural Bayesian framework. We demonstrate that the Bayesian method gives more reliable predictions, in particular for relatively small data sets. The obtained posterior (the probability distribution of network parameters given the data) which in itself is intractable, can be made accessible by several approximations. We review approximations by Hybrid Markov Chain Monte Carlo sampling, a variational method and the Laplace approximation. We argue that although each Bayesian approach circumvents the shortcomings of the original Cox analysis, and therefore yields better predictive results, in practice the use of variational methods or Laplace is preferable. Since Cox survival analysis is infamous for its poor results with (too) many inputs, we use the Bayesian posterior to estimate p-values on the inputs and to formulate an algorithm for backward elimination. We show that after removal of irrelevant inputs Bayesian methods still achieve significantly better results than classical Cox.

摘要

在本文中,我们表明,当传统的Cox生存分析辅以合理的先验并在神经贝叶斯框架内进行分析时,可以得到改进。我们证明,贝叶斯方法能给出更可靠的预测,特别是对于相对较小的数据集。得到的后验(给定数据的网络参数的概率分布)本身难以处理,可以通过几种近似方法来获取。我们回顾了混合马尔可夫链蒙特卡罗采样、变分方法和拉普拉斯近似等近似方法。我们认为,虽然每种贝叶斯方法都规避了原始Cox分析的缺点,因此产生了更好的预测结果,但在实践中,变分方法或拉普拉斯方法的使用更可取。由于Cox生存分析因在(过多)输入时结果不佳而声名狼藉,我们使用贝叶斯后验来估计输入上的p值,并制定一种向后消除的算法。我们表明,在去除无关输入后,贝叶斯方法仍然比经典的Cox方法取得显著更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验