Delnomdedieu M, Boudou A, Georgescauld D, Dufourc E J
Centre de Recherche Paul Pascal, CNRS, Pessac, France.
Chem Biol Interact. 1992 Feb;81(3):243-69. doi: 10.1016/0009-2797(92)90081-u.
High resolution mercury nuclear magnetic resonance (199Hg-NMR) experiments have been performed in order to monitor mercury chemical speciation when HgCl2 is added to water solutions and follow mercury binding properties towards biomembranes or other ligands. Variations of 199Hg chemical shifts by several hundred ppm depending upon pH and/or pCl changes or upon ligand or membrane addition afforded to determine the thermodynamic parameters which describe the equilibria between the various species in solution. By comparison to an external reference, the decrease in concentration of mercury species in solution allowed to estimate the amount as well as the thermodynamic parameters of unlabile mercury-ligand or mercury-membrane complexes. Hence, some buffer molecules can be classified in a scale of increasing complexing power towards Hg(II): EGTA greater than Tris greater than HEPES. In contrast, MOPS, Borax, phosphates and acetates show little complexation properties for mercury, in our experimental conditions. Evidence for complexation with phosphatidylethanolamine (PE), phosphatidylserine (PS) and human erythrocyte membranes has been found. Hg(II) does not form complexes with egg phosphatidylcholine membranes. Interaction with PE and PS model membranes can be described by the presence of two mercury sites, one labile, the other unlabile, in the NMR time scale. In the labile site Hg(PE) and Hg(PS)2 would be formed whereas in the unlabile site Hg(II) would establish bridges between three PE or PS molecules. Calculated thermodynamic data clearly indicate that PE is a better complexing agent than PS. Evidence is also found that complexation with lipids uses at first the HgCl2 species. Interestingly, mercury complexation with ligands or membranes can be completely reversed by addition of decimolar NaCl solutions. Minute mechanisms for mercury complexation with the primary amine of PE or PS membrane head groups are discussed.
为了监测氯化汞添加到水溶液中时汞的化学形态,并跟踪汞与生物膜或其他配体的结合特性,进行了高分辨率汞核磁共振(199Hg-NMR)实验。根据pH和/或pCl的变化,或添加配体或膜后,199Hg化学位移会有数百ppm的变化,从而能够确定描述溶液中各种物种之间平衡的热力学参数。通过与外部参考进行比较,溶液中汞物种浓度的降低使得能够估计不稳定汞-配体或汞-膜络合物的量以及热力学参数。因此,一些缓冲分子可以按照对Hg(II)络合能力增强的顺序进行分类:乙二醇双乙醚二胺四乙酸(EGTA)大于三羟甲基氨基甲烷(Tris)大于4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES)。相比之下,在我们的实验条件下,3-(N-吗啉代)丙磺酸(MOPS)、硼砂、磷酸盐和醋酸盐对汞的络合特性较弱。已发现汞与磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)和人红细胞膜发生络合的证据。Hg(II)不与鸡蛋磷脂酰胆碱膜形成络合物。在核磁共振时间尺度上,与PE和PS模型膜的相互作用可以通过存在两个汞位点来描述,一个是不稳定的,另一个是稳定的。在不稳定位点会形成Hg(PE)和Hg(PS)2,而在稳定位点Hg(II)会在三个PE或PS分子之间形成桥键。计算得到的热力学数据清楚地表明,PE是比PS更好的络合剂。还发现证据表明,与脂质的络合首先使用HgCl2物种。有趣的是,通过添加十分之一摩尔浓度的氯化钠溶液,可以完全逆转汞与配体或膜的络合。讨论了汞与PE或PS膜头部基团的伯胺发生络合的微观机制。