Suwelack D, Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Wawrowsky K, Lowenstein P R, Castro M G
Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
Gene Ther. 2004 Dec;11(24):1742-52. doi: 10.1038/sj.gt.3302377.
Nigrostriatal neurons degenerate during Parkinson's disease. Experimentally, neurotoxins such as 6-hydroxydopamine (6-OHDA) in rodents, and MPTP in mice and non-human primates, are used to model the disease-induced degeneration of midbrain dopaminergic neurons. Glial-cell-derived neurotrophic factor (GDNF) is a very powerful neuroprotector of dopaminergic neurons in all species examined. However, recent reports have indicated the possibility that GDNF may, in the long term and if expressed in an unregulated manner, exert untoward effects on midbrain dopaminergic neuronal structure and function. Although GDNF remains a powerful neurotrophin, the search for alternative therapies based on alternative and complementary mechanisms of action to GDNF is warranted. Recently, recombinant adenovirus-derived vectors encoding the differentiation factor Sonic Hedgehog (Shh) and its downstream transcriptional activator (Gli1) were shown to protect dopaminergic neurons in the substantia nigra pars compacta from 6-OHDA-induced neurotoxicity in rats in vivo. A pancellular human CMV (hCMV) promoter was used to drive the expression of both Shh and Gli1. Since Gli1 is a transcription factor and therefore exerts its actions intracellularly, we decided to test whether expression of Gli1 within neurons would be effective for neuroprotection. We demonstrate that neuronal-specific expression of Gli1 using the neuron-specific Talpha1 alpha-tubulin (Talpha1) promoter was neuroprotective, and its efficiency was comparable to the pancellular strong viral hCMV promoter. These results suggest that expression of the transcription factor Gli1 solely within neurons is neuroprotective for dopaminergic neurons in vivo and, furthermore, that neuronal-specific promoters are effective within the context of adenovirus-mediated gene therapy-induced neuroprotection of dopaminergic midbrain neurons. Since cell-type specific promoters are known to be weaker than the viral hCMV promoter, our data demonstrate that neuronal-specific expression of transcription factors is an effective, specific, and sufficient targeted approach for neurological gene therapy applications, potentially minimizing side effects due to unrestricted promiscuous gene expression within target tissues.
在帕金森病中,黑质纹状体神经元会发生退化。在实验中,啮齿动物体内的6-羟基多巴胺(6-OHDA)以及小鼠和非人灵长类动物体内的1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)等神经毒素被用于模拟疾病诱导的中脑多巴胺能神经元退化。胶质细胞源性神经营养因子(GDNF)在所有被检测的物种中都是一种非常强大的多巴胺能神经元神经保护剂。然而,最近的报道表明,如果GDNF长期以不受调控的方式表达,可能会对中脑多巴胺能神经元的结构和功能产生不良影响。尽管GDNF仍然是一种强大的神经营养因子,但基于与GDNF作用机制不同且互补的替代疗法的探索是有必要的。最近,编码分化因子音猬因子(Shh)及其下游转录激活因子(Gli1)的重组腺病毒载体被证明能够在体内保护大鼠黑质致密部的多巴胺能神经元免受6-OHDA诱导的神经毒性。一个全细胞人巨细胞病毒(hCMV)启动子被用于驱动Shh和Gli1的表达。由于Gli1是一种转录因子,因此在细胞内发挥作用,我们决定测试神经元内Gli1的表达是否对神经保护有效。我们证明,使用神经元特异性的α1微管蛋白(Tα1)启动子进行Gli1的神经元特异性表达具有神经保护作用,其效率与全细胞强病毒hCMV启动子相当。这些结果表明,转录因子Gli1仅在神经元内的表达对体内多巴胺能神经元具有神经保护作用,此外,神经元特异性启动子在腺病毒介导的基因治疗诱导的中脑多巴胺能神经元神经保护的背景下是有效的。由于已知细胞类型特异性启动子比病毒hCMV启动子弱,我们的数据表明,转录因子的神经元特异性表达是神经学基因治疗应用中一种有效、特异且充分的靶向方法,有可能将靶组织内不受限制的乱序基因表达所导致的副作用降至最低。