Roosen Johnny, Engelen Kristof, Marchal Kathleen, Mathys Janick, Griffioen Gerard, Cameroni Elisabetta, Thevelein Johan M, De Virgilio Claudio, De Moor Bart, Winderickx Joris
Functional Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg, B-3001 Leuven-Heverlee, Belgium.
Mol Microbiol. 2005 Feb;55(3):862-80. doi: 10.1111/j.1365-2958.2004.04429.x.
In the yeast Saccharomyces cerevisiae, PKA and Sch9 exert similar physiological roles in response to nutrient availability. However, their functional redundancy complicates to distinguish properly the target genes for both kinases. In this article, we analysed different phenotypic read-outs. The data unequivocally showed that both kinases act through separate signalling cascades. In addition, genome-wide expression analysis under conditions and with strains in which either PKA and/or Sch9 signalling was specifically affected, demonstrated that both kinases synergistically or oppositely regulate given gene targets. Unlike PKA, which negatively regulates stress-responsive element (STRE)- and post-diauxic shift (PDS)-driven gene expression, Sch9 appears to exert additional positive control on the Rim15-effector Gis1 to regulate PDS-driven gene expression. The data presented are consistent with a cyclic AMP (cAMP)-gating phenomenon recognized in higher eukaryotes consisting of a main gatekeeper, the protein kinase PKA, switching on or off the activities and signals transmitted through primary pathways such as, in case of yeast, the Sch9-controlled signalling route. This mechanism allows fine-tuning various nutritional responses in yeast cells, allowing them to adapt metabolism and growth appropriately.
在酿酒酵母中,蛋白激酶A(PKA)和Sch9在响应营养可利用性方面发挥相似的生理作用。然而,它们功能上的冗余使得准确区分这两种激酶的靶基因变得复杂。在本文中,我们分析了不同的表型读数。数据明确表明,这两种激酶通过不同的信号级联发挥作用。此外,在PKA和/或Sch9信号传导受到特异性影响的条件和菌株下进行的全基因组表达分析表明,这两种激酶协同或相反地调节特定的基因靶标。与负向调节应激反应元件(STRE)和二次生长转换后(PDS)驱动的基因表达的PKA不同,Sch9似乎对Rim15效应子Gis1施加额外的正向控制,以调节PDS驱动的基因表达。所呈现的数据与在高等真核生物中识别的环磷酸腺苷(cAMP)门控现象一致,该现象由主要守门人蛋白激酶PKA开启或关闭通过主要途径传递的活性和信号,例如在酵母中,由Sch9控制的信号传导途径。这种机制允许对酵母细胞中的各种营养反应进行微调,使它们能够适当地调整代谢和生长。