Suppr超能文献

细胞外基质硬度以双相方式控制平滑肌细胞的运动。

Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion.

作者信息

Peyton Shelly R, Putnam Andrew J

机构信息

Department of Chemical Engineering and Materials Science, The Henry Samueli School of Engineering, University of California, Irvine, California, USA.

出版信息

J Cell Physiol. 2005 Jul;204(1):198-209. doi: 10.1002/jcp.20274.

Abstract

Increasing evidence suggests that mechanical cues inherent to the extracellular matrix (ECM) may be equally as critical as its chemical identity in regulating cell behavior. We hypothesized that the mechanical properties of the ECM directly regulate the motility of vascular smooth muscle cells (SMCs) and tested this hypothesis using polyacrylamide substrates with tunable mechanical properties. Quantification of the migration speed on uniformly compliant hydrogels spanning a range of stiffnesses (Young's moduli values from 1.0 to 308 kPa for acrylamide/bisacrylamide ratios between 5/0.1% and 15/1.2%, respectively) revealed a biphasic dependence on substrate compliance, suggesting the existence of an optimal substrate stiffness capable of supporting maximal migration. The value of this optimal stiffness shifted depending on the concentration of ECM protein covalently attached to the substrate. Specifically, on substrates presenting a theoretical density of 0.8 microg/cm(2) fibronectin, the maximum speed of 0.74 +/- 0.09 microm/min was achieved on a 51.9 kPa gel; on substrates presenting a theoretical density of 8.0 microg/cm(2) fibronectin, the maximum speed of 0.72 +/- 0.06 microm/min occurred on a softer 21.6 kPa gel. Pre-treatment of cells with Y27632, an inhibitor of the Rho/Rho-kinase (ROCK) pathway, reduced these observed maxima to values comparable to those on non-optimal stiffnesses. In parallel, quantification of TritonX-insoluble vinculin via Western blotting, coupled with qualitative fluorescent microscopy, revealed that the formation of focal adhesions and actin stress fibers also depends on ECM stiffness. Combined, these data suggest that the mechanical properties of the underlying ECM regulate Rho-mediated contractility in SMCs by disrupting a presumptive cell-ECM force balance, which in turn regulates cytoskeletal assembly and ultimately, cell migration.

摘要

越来越多的证据表明,细胞外基质(ECM)固有的机械信号在调节细胞行为方面可能与其化学特性同样重要。我们假设ECM的机械特性直接调节血管平滑肌细胞(SMC)的运动性,并使用具有可调机械特性的聚丙烯酰胺底物来验证这一假设。对一系列不同硬度(丙烯酰胺/双丙烯酰胺比例分别为5/0.1%至15/1.2%时,杨氏模量值从1.0至308 kPa)的均匀顺应性水凝胶上的迁移速度进行量化,结果显示对底物顺应性呈双相依赖性,这表明存在一个能够支持最大迁移的最佳底物硬度。这个最佳硬度的值会根据共价连接到底物上的ECM蛋白浓度而变化。具体而言,在呈现理论密度为0.8 μg/cm²纤连蛋白的底物上,在51.9 kPa的凝胶上达到了0.74±0.09 μm/min的最大速度;在呈现理论密度为8.0 μg/cm²纤连蛋白的底物上,在较软的21.6 kPa凝胶上出现了0.72±0.06 μm/min的最大速度。用Rho/Rho激酶(ROCK)途径抑制剂Y27632预处理细胞,将这些观察到的最大值降低到与非最佳硬度时相当的值。同时,通过蛋白质免疫印迹法对TritonX不溶性纽蛋白进行量化,并结合定性荧光显微镜观察,结果表明粘着斑和肌动蛋白应力纤维的形成也取决于ECM硬度。综合这些数据表明,底层ECM的机械特性通过破坏假定的细胞-ECM力平衡来调节SMC中Rho介导的收缩性,这反过来又调节细胞骨架组装并最终调节细胞迁移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验