Suppr超能文献

化学键本质的再探讨:非极性键的能量划分分析

The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.

作者信息

Kovács Attila, Esterhuysen Catharine, Frenking Gernot

机构信息

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35042 Marburg, Germany.

出版信息

Chemistry. 2005 Mar 4;11(6):1813-25. doi: 10.1002/chem.200400525.

Abstract

The nature of the chemical bond in nonpolar molecules has been investigated by energy-partitioning analysis (EPA) of the ADF program using DFT calculations. The EPA divides the bonding interactions into three major components, that is, the repulsive Pauli term, quasiclassical electrostatic interactions, and orbital interactions. The electrostatic and orbital terms are used to define the nature of the chemical bond. It is shown that nonpolar bonds between main-group elements of the first and higher octal rows of the periodic system, which are prototypical covalent bonds, have large attractive contributions from classical electrostatic interactions, which may even be stronger than the attractive orbital interactions. Fragments of molecules with totally symmetrical electron-density distributions, like the nitrogen atoms in N(2), may strongly attract each other through classical electrostatic forces, which constitute 30.0 % of the total attractive interactions. The electrostatic attraction can be enhanced by anisotropic charge distribution of the valence electrons of the atoms that have local areas of (negative) charge concentration. It is shown that the use of atomic partial charges in the analysis of the nature of the interatomic interactions may be misleading because they do not reveal the topography of the electronic charge distribution. Besides dinitrogen, four groups of molecules have been studied. The attractive binding interactions in H(n)E-EH(n) (E=Li to F; n=0-3) have between 20.7 (E=F) and 58.4 % (E=Be) electrostatic character. The substitution of hydrogen by fluorine does not lead to significant changes in the nature of the binding interactions in F(n)E-EF(n) (E=Be to O). The electrostatic contributions to the attractive interactions in F(n)E-EF(n) are between 29.8 (E=O) and 55.3 % (E=Be). The fluorine substituents have a significant effect on the Pauli repulsion in the nitrogen and oxygen compounds. This explains why F(2)N-NF(2) has a much weaker bond than H(2)N-NH(2), whereas the interaction energy in FO-OF is much stronger than in HO-OH. The orbital interactions make larger contributions to the double bonds in HB=BH, H(2)C=CH(2), and HN=NH (between 59.9 % in B(2)H(2) and 65.4 % in N(2)H(2)) than to the corresponding single bonds in H(n)E-EH(n). The orbital term Delta E(orb) (72.4 %) makes an even greater contribution to the HC triple bond CH triple bond. The contribution of Delta E(orb) to the H(n)E=EH(n) bond increases and the relative contribution of the pi bonding decreases as E becomes more electronegative. The pi-bonding interactions in HC triple bond CH amount to 44.4 % of the total orbital interactions. The interaction energy in H(3)E-EH(3) (E=C to Pb) decreases monotonically as the element E becomes heavier. The electrostatic contributions to the E-E bond increases from E=C (41.4 %) to E=Sn (55.1 %) but then decreases when E=Pb (51.7 %). A true understanding of the strength and trends of the chemical bonds can only be achieved when the Pauli repulsion is considered. In an absolute sense the repulsive Delta E(Pauli) term is in most cases the largest term in the EPA.

摘要

通过使用密度泛函理论(DFT)计算的ADF程序的能量划分分析(EPA),对非极性分子中化学键的性质进行了研究。EPA将键合相互作用分为三个主要成分,即排斥性的泡利项、准经典静电相互作用和轨道相互作用。静电项和轨道项用于定义化学键的性质。结果表明,周期系第一和更高八隅体行主族元素之间的非极性键(典型的共价键),具有来自经典静电相互作用的大的吸引贡献,这甚至可能比吸引性的轨道相互作用更强。具有完全对称电子密度分布的分子片段,如N₂中的氮原子,可能通过经典静电力强烈相互吸引,这占总吸引相互作用的30.0%。静电吸引可以通过具有(负)电荷集中局部区域的原子价电子的各向异性电荷分布来增强。结果表明,在分析原子间相互作用的性质时使用原子部分电荷可能会产生误导,因为它们没有揭示电子电荷分布的拓扑结构。除了二氮之外,还研究了四组分子。HₙE - EHₙ(E = Li到F;n = 0 - 3)中的吸引性键合相互作用具有20.7%(E = F)到58.4%(E = Be)的静电特征。氟取代氢不会导致FₙE - EFₙ(E = Be到O)中键合相互作用性质的显著变化。FₙE - EFₙ中对吸引相互作用的静电贡献在29.8%(E = O)到55.3%(E = Be)之间。氟取代基对氮和氧化合物中的泡利排斥有显著影响。这解释了为什么F₂N - NF₂的键比H₂N - NH₂弱得多,而FO - OF中的相互作用能比HO - OH中的强得多。轨道相互作用对HB = BH、H₂C = CH₂和HN = NH中的双键(在B₂H₂中为59.9%,在N₂H₂中为65.4%)的贡献比对HₙE - EHₙ中相应单键的贡献更大。轨道项ΔE(orb)(72.4%)对HC三键CH三键的贡献甚至更大。随着E的电负性增加,ΔE(orb)对HₙE = EHₙ键的贡献增加,而π键的相对贡献减少。HC三键CH中的π键相互作用占总轨道相互作用的44.4%。H₃E - EH₃(E = C到Pb)中的相互作用能随着元素E变重而单调降低。对E - E键的静电贡献从E = C(41.4%)增加到E = Sn(55.1%),但当E = Pb时又降低(51.7%)。只有考虑泡利排斥,才能真正理解化学键的强度和趋势。从绝对意义上讲,排斥性的ΔE(Pauli)项在大多数情况下是EPA中最大的项。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验