Suppr超能文献

一种三组分调节系统调控铜绿假单胞菌中的生物膜成熟和III型分泌。

A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa.

作者信息

Kuchma Sherry L, Connolly John P, O'Toole George A

机构信息

Department of Microbiology and Immunology, Dartmouth Medical School, North College St., Hanover, NH 03755, USA.

出版信息

J Bacteriol. 2005 Feb;187(4):1441-54. doi: 10.1128/JB.187.4.1441-1454.2005.

Abstract

Biofilms are structured communities found associated with a wide range of surfaces. Here we report the identification of a three-component regulatory system required for biofilm maturation by Pseudomonas aeruginosa strain PA14. A transposon mutation that altered biofilm formation in a 96-well dish assay originally defined this locus, which is comprised of genes for a putative sensor histidine kinase and two response regulators and has been designated sadARS. Nonpolar mutations in any of the sadARS genes result in biofilms with an altered mature structure but do not confer defects in growth or early biofilm formation, swimming, or twitching motility. After 2 days of growth under flowing conditions, biofilms formed by the mutants are indistinguishable from those formed by the wild-type (WT) strain. However, by 5 days, mutant biofilms appear to be more homogeneous than the WT in that they fail to form large and distinct macrocolonies and show a drastic reduction in water channels. We propose that the sadARS three-component system is required for later events in biofilm formation on an abiotic surface. Semiquantitative reverse transcription-PCR analysis showed that there is no detectable change in expression of the sadARS genes when cells are grown in a planktonic culture versus a biofilm, indicating that this locus is not itself induced during or in response to biofilm formation. DNA microarray studies were used to identify downstream targets of the SadARS system. Among the genes regulated by the SadARS system are those required for type III secretion. Mutations in type III secretion genes result in strains with enhanced biofilm formation. We propose a possible mechanism for the role that the SadARS system plays in biofilm formation.

摘要

生物膜是与多种表面相关的结构化群落。在此,我们报告了对铜绿假单胞菌PA14菌株生物膜成熟所需的一个三组分调节系统的鉴定。最初在96孔板试验中改变生物膜形成的一个转座子突变定义了这个位点,它由一个推定的传感器组氨酸激酶和两个反应调节因子的基因组成,并被命名为sadARS。sadARS基因中任何一个的非极性突变都会导致生物膜的成熟结构发生改变,但不会在生长、早期生物膜形成、游动或摆动运动方面产生缺陷。在流动条件下生长2天后,突变体形成的生物膜与野生型(WT)菌株形成的生物膜无法区分。然而,到第5天时,突变体生物膜似乎比WT更均匀,因为它们无法形成大的、明显的大菌落,并且水通道显著减少。我们提出,sadARS三组分系统是在非生物表面上生物膜形成后期事件所必需的。半定量逆转录 - PCR分析表明,当细胞在浮游培养物中生长与在生物膜中生长时,sadARS基因的表达没有可检测到的变化,这表明该位点本身在生物膜形成过程中或对生物膜形成的反应中不会被诱导。DNA微阵列研究用于鉴定SadARS系统的下游靶点。SadARS系统调节的基因中包括III型分泌所需的基因。III型分泌基因的突变导致生物膜形成增强的菌株。我们提出了SadARS系统在生物膜形成中所起作用的一种可能机制。

相似文献

1
2
Characterization of temporal protein production in Pseudomonas aeruginosa biofilms.
J Bacteriol. 2005 Dec;187(23):8114-26. doi: 10.1128/JB.187.23.8114-8126.2005.
4
5
Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.
Mol Microbiol. 2004 Aug;53(4):1075-87. doi: 10.1111/j.1365-2958.2004.04181.x.
7
Global gene expression in Staphylococcus aureus biofilms.
J Bacteriol. 2004 Jul;186(14):4665-84. doi: 10.1128/JB.186.14.4665-4684.2004.
8
Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14.
Appl Environ Microbiol. 2015 Feb;81(4):1274-85. doi: 10.1128/AEM.02832-14.
9
Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa.
ISME J. 2008 Feb;2(2):180-94. doi: 10.1038/ismej.2007.108. Epub 2007 Nov 29.

引用本文的文献

1
Role of SMF-1 and cbl pili in biofilm formation.
Biofilm. 2025 Jan 20;9:100253. doi: 10.1016/j.bioflm.2025.100253. eCollection 2025 Jun.
4
Temporal modelling of the biofilm lifecycle (TMBL) establishes kinetic analysis of plate-based bacterial biofilm dynamics.
J Microbiol Methods. 2023 Sep;212:106808. doi: 10.1016/j.mimet.2023.106808. Epub 2023 Aug 17.
5
Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis.
Adv Exp Med Biol. 2022;1386:371-395. doi: 10.1007/978-3-031-08491-1_14.
6
Conquering the host: spp. and molecular regulators in lung infection.
Front Microbiol. 2022 Sep 26;13:983149. doi: 10.3389/fmicb.2022.983149. eCollection 2022.
7
The biofilm life cycle: expanding the conceptual model of biofilm formation.
Nat Rev Microbiol. 2022 Oct;20(10):608-620. doi: 10.1038/s41579-022-00767-0. Epub 2022 Aug 3.
8
9
Biofilm through the Looking Glass: A Microbial Food Safety Perspective.
Pathogens. 2022 Mar 12;11(3):346. doi: 10.3390/pathogens11030346.
10
Roles of Two-Component Systems in Virulence.
Int J Mol Sci. 2021 Nov 10;22(22):12152. doi: 10.3390/ijms222212152.

本文引用的文献

1
Tn5 Insertion Mutants of Pseudomonas fluorescens Defective in Adhesion to Soil and Seeds.
Appl Environ Microbiol. 1994 Jul;60(7):2637-42. doi: 10.1128/aem.60.7.2637-2642.1994.
3
The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica.
J Bacteriol. 2004 Sep;186(17):5692-8. doi: 10.1128/JB.186.17.5692-5698.2004.
4
Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation.
Mol Microbiol. 2004 Aug;53(3):857-69. doi: 10.1111/j.1365-2958.2004.04155.x.
8
Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development.
J Bacteriol. 2004 Jul;186(14):4449-56. doi: 10.1128/JB.186.14.4449-4456.2004.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验