Suppr超能文献

喂食信号会改变处于光/暗循环中的小鼠视交叉上核的生物钟基因振荡和光反应。

Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.

作者信息

Mendoza Jorge, Graff Caroline, Dardente Hugues, Pevet Paul, Challet Etienne

机构信息

Laboratory of Neurobiology of Rhythms, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7518, Department of Neuroscience, Institut Fédératif de Recherche 37, University Louis Pasteur, F-67084 Strasbourg, France.

出版信息

J Neurosci. 2005 Feb 9;25(6):1514-22. doi: 10.1523/JNEUROSCI.4397-04.2005.

Abstract

The suprachiasmatic nuclei (SCN) of the hypothalamus contain the master mammalian circadian clock, which is mainly reset by light. Temporal restricted feeding, a potent synchronizer of peripheral oscillators, has only weak influence on light-entrained rhythms via the SCN, unless restricted feeding is coupled with calorie restriction, thereby altering phase angle of photic synchronization. Effects of daytime restricted feeding were investigated on the mouse circadian system. Normocaloric feeding at midday led to a predominantly diurnal (60%) food intake and decreased blood glucose in the afternoon, but it did not affect the phase of locomotor activity rhythm or vasopressin expression in the SCN. In contrast, hypocaloric feeding at midday led to 2-4 h phase advances of three circadian outputs, locomotor activity rhythm, pineal melatonin, and vasopressin mRNA cycle in the SCN, and it decreased daily levels of blood glucose. Furthermore, Per1 and Cry2 oscillations in the SCN were phase advanced by 1 and 3 h, respectively, in hypocalorie- but not in normocalorie-fed mice. The phase of Per2 and Bmal1 expression remained unchanged regardless of feeding condition. Moreover, the shape of behavioral phase-response curve to light and light-induced expression of Per1 in the SCN were markedly modified in hypocalorie-fed mice compared with animals fed ad libitum. The present study shows that diurnal hypocaloric feeding affects not only the temporal organization of the SCN clockwork and circadian outputs in mice under light/dark cycle but also photic responses of the circadian system, thus indicating that energy metabolism modulates circadian rhythmicity and gating of photic inputs in mammals.

摘要

下丘脑的视交叉上核(SCN)包含哺乳动物的主生物钟,其主要由光重置。限时进食是外周振荡器的有效同步器,对通过SCN的光驱动节律影响微弱,除非限时进食与热量限制相结合,从而改变光同步的相位角。研究了白天限时进食对小鼠昼夜节律系统的影响。中午进行正常热量进食导致主要在白天(60%)摄入食物,并使下午血糖降低,但不影响运动活动节律的相位或SCN中血管加压素的表达。相比之下,中午进行低热量进食导致三种昼夜节律输出(运动活动节律、松果体褪黑素和SCN中血管加压素mRNA周期)提前2 - 4小时,并降低了每日血糖水平。此外,在低热量喂养而非正常热量喂养的小鼠中,SCN中Per1和Cry2振荡分别提前1小时和3小时。无论喂养条件如何,Per2和Bmal1表达的相位均保持不变。此外,与自由进食的动物相比,低热量喂养小鼠对光的行为相位反应曲线的形状以及SCN中Per1的光诱导表达均有明显改变。本研究表明,白天低热量进食不仅影响光/暗周期下小鼠SCN生物钟机制和昼夜节律输出的时间组织,还影响昼夜节律系统的光反应,从而表明能量代谢调节哺乳动物的昼夜节律性和光输入的门控。

相似文献

2
Synchronization of the molecular clockwork by light- and food-related cues in mammals.
Biol Chem. 2003 May;384(5):711-9. doi: 10.1515/BC.2003.079.
5
[Clock genes, circadian rhythms and food intake].
Pathol Biol (Paris). 2007 Apr-May;55(3-4):176-7. doi: 10.1016/j.patbio.2006.12.005. Epub 2007 Apr 6.
7
Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light.
Neuroscience. 2011 Dec 1;197:65-71. doi: 10.1016/j.neuroscience.2011.09.028. Epub 2011 Sep 17.
9
Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain.
Chronobiol Int. 2017;34(1):17-36. doi: 10.1080/07420528.2016.1231689. Epub 2016 Sep 26.

引用本文的文献

1
Misalignment of Circadian Rhythms in Diet-Induced Obesity.
Adv Exp Med Biol. 2024;1460:27-71. doi: 10.1007/978-3-031-63657-8_2.
2
Misaligned feeding uncouples daily rhythms within brown adipose tissue and between peripheral clocks.
Cell Rep. 2024 Aug 27;43(8):114523. doi: 10.1016/j.celrep.2024.114523. Epub 2024 Jul 23.
3
Leptin receptor neurons in the dorsomedial hypothalamus input to the circadian feeding network.
Sci Adv. 2023 Aug 25;9(34):eadh9570. doi: 10.1126/sciadv.adh9570.
4
Weight Loss and Sleep, Current Evidence in Animal Models and Humans.
Nutrients. 2023 Aug 3;15(15):3431. doi: 10.3390/nu15153431.
5
Reciprocal Interactions between Circadian Clocks, Food Intake, and Energy Metabolism.
Biology (Basel). 2023 Mar 31;12(4):539. doi: 10.3390/biology12040539.
6
Association of breakfast skipping with habitual dietary intake and BMI in female rotating shift workers.
Public Health Nutr. 2023 Aug;26(8):1634-1643. doi: 10.1017/S1368980023000794. Epub 2023 Apr 20.
7
Hypothalamic CREB Regulates the Expression of Pomc-Processing Enzyme Pcsk2.
Cells. 2022 Jun 22;11(13):1996. doi: 10.3390/cells11131996.
8
Sleep Loss Causes Dysfunction in Murine Extraorbital Lacrimal Glands.
Invest Ophthalmol Vis Sci. 2022 Jun 1;63(6):19. doi: 10.1167/iovs.63.6.19.
9
Anticipation of Scheduled Feeding in BTBR Mice Reveals Independence and Interactions Between the Light- and Food-Entrainable Circadian Clocks.
Front Integr Neurosci. 2022 May 30;16:896200. doi: 10.3389/fnint.2022.896200. eCollection 2022.
10
Circadian Synchrony: Sleep, Nutrition, and Physical Activity.
Front Netw Physiol. 2021 Oct;1. doi: 10.3389/fnetp.2021.732243. Epub 2021 Oct 12.

本文引用的文献

1
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock.
Neuron. 2004 Aug 19;43(4):527-37. doi: 10.1016/j.neuron.2004.07.018.
3
An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center.
J Neurosci. 2003 Jul 9;23(14):6141-51. doi: 10.1523/JNEUROSCI.23-14-06141.2003.
7
Dec1 and Dec2 are regulators of the mammalian molecular clock.
Nature. 2002 Oct 24;419(6909):841-4. doi: 10.1038/nature01123.
10
The "other" circadian system: food as a Zeitgeber.
J Biol Rhythms. 2002 Aug;17(4):284-92. doi: 10.1177/074873040201700402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验