Chalmers Rachel M, Ferguson Christobel, Cacciò Simone, Gasser Robin B, Abs EL-Osta Youssef G, Heijnen Leo, Xiao Lihua, Elwin Kristin, Hadfield Stephen, Sinclair Martha, Stevens Melita
Cryptosporidium Reference Unit, NPHS Microbiology Swansea, Singleton Hospital, Swansea SA2 8QA, UK.
Int J Parasitol. 2005 Apr 1;35(4):397-410. doi: 10.1016/j.ijpara.2005.01.001.
A study was undertaken to compare the performance of five different molecular methods (available in four different laboratories) for the identification of Cryptosporidium parvum and Cryptosporidium hominis and the detection of genetic variation within each of these species. The same panel of oocyst DNA samples derived from faeces (n=54; coded blindly) was sent for analysis by: (i) DNA sequence analysis of a fragment of the HSP70 gene; (ii) DNA sequence analysis and the ssrRNA gene in laboratory 1; (iii) single-strand conformation polymorphism analysis of part of the ssrRNA; (iv) SSCP analysis of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA region in laboratory 2; (v) 60 kDa glycoprotein (gp60) gene sequencing with prior species determination using PCR with restriction fragment length polymorphism analysis of the ssrRNA gene in laboratory 3; and (vi) multilocus genotyping at three microsatellite markers in laboratory 4. For detecting variation within C. parvum and C. hominis, SSCP analysis of ITS-2 was considered to have superior utility and determined 'subgenotypes' in samples containing DNA from both species. SSCP was also most cost effective in terms of time, cost and consumables. Sequence analysis of gp60 and microsatellite markers ML1, ML2 and 'gp15' provided good comparators for the SSCP of ITS-2. However, applicability of these methods to other Cryptosporidium species or genotypes and to environmental samples needs to be evaluated. This trial provided, for the first time, a direct comparison of multiple methods for the genetic characterisation of C. parvum and C. hominis samples. A protocol has been established for the international distribution of samples for the characterisation of Cryptosporidium. This can be applied in further evaluation of molecular methods by investigation of a larger number of unrelated samples to establish sensitivity, typability, reproducibility and discriminatory power based on internationally accepted methods for evaluation of microbial typing schemes.
开展了一项研究,比较五种不同分子方法(可在四个不同实验室使用)在鉴定微小隐孢子虫和人隐孢子虫以及检测这些物种内部遗传变异方面的性能。同一组源自粪便的卵囊DNA样本(n = 54;盲编码)被送去进行以下分析:(i) HSP70基因片段的DNA序列分析;(ii) 实验室1对ssrRNA基因的DNA序列分析;(iii) 部分ssrRNA的单链构象多态性分析;(iv) 实验室2对核糖体DNA区域第二个内部转录间隔区(ITS-2)的SSCP分析;(v) 实验室3通过对ssrRNA基因进行PCR和限制性片段长度多态性分析先进行物种鉴定,然后对60 kDa糖蛋白(gp60)基因进行测序;以及(vi) 实验室4对三个微卫星标记进行多位点基因分型。为了检测微小隐孢子虫和人隐孢子虫内部的变异,ITS-2的SSCP分析被认为具有更高的实用性,并在含有两种物种DNA的样本中确定了“亚基因型”。就时间、成本和耗材而言,SSCP也是最具成本效益的。gp60的序列分析以及微卫星标记ML1、ML2和“gp15”为ITS-2的SSCP提供了良好的比较对象。然而,这些方法对其他隐孢子虫物种或基因型以及环境样本的适用性需要进行评估。该试验首次对多种方法进行了直接比较,以对微小隐孢子虫和人隐孢子虫样本进行遗传特征分析。已经建立了用于国际分发隐孢子虫特征分析样本的方案。这可应用于通过调查更多不相关样本,基于国际认可的微生物分型方案评估方法来进一步评估分子方法,以确定其敏感性、分型能力、可重复性和鉴别能力。