Suppr超能文献

囊性纤维化患者CFTR功能的药理学诱导:突变特异性疗法。

Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.

作者信息

Kerem Eitan

机构信息

Department of Pediatrics and Cystic Fibrosis Center, Hadassah University Hospital, Jerusalem, Israel.

出版信息

Pediatr Pulmonol. 2005 Sep;40(3):183-96. doi: 10.1002/ppul.20200.

Abstract

CFTR mutations cause defects of CFTR protein production and function by different molecular mechanisms. Mutations can be classified according to the mechanisms by which they disrupt CFTR function. This understanding of the different molecular mechanisms of CFTR dysfunction provides the scientific basis for the development of targeted drugs for mutation-specific therapy of cystic fibrosis (CF). Class I mutations are nonsense mutations that result in the presence of a premature stop codon that leads to the production of unstable mRNA, or the release from the ribosome of a short, truncated protein that is not functional. Aminoglycoside antibiotics can suppress premature termination codons by disrupting translational fidelity and allowing the incorporation of an amino acid, thus permitting translation to continue to the normal termination of the transcript. Class II mutations cause impairment of CFTR processing and folding in the Golgi. As a result, the mutant CFTR is retained in the endoplasmic reticulum (ER) and eventually targeted for degradation by the quality control mechanisms. Chemical and molecular chaperones such as sodium-4-phenylbutyrate can stabilize protein structure, and allow it to escape from degradation in the ER and be transported to the cell membrane. Class III mutations disrupt the function of the regulatory domain. CFTR is resistant to phosphorylation or adenosine tri-phosphate (ATP) binding. CFTR activators such as alkylxanthines (CPX) and the flavonoid genistein can overcome affected ATP binding through direct binding to a nucleotide binding fold. In patients carrying class IV mutations, phosphorylation of CFTR results in reduced chloride transport. Increases in the overall cell surface content of these mutants might overcome the relative reduction in conductance. Alternatively, restoring native chloride pore characteristics pharmacologically might be effective. Activators of CFTR at the plasma membrane may function by promoting CFTR phosphorylation, by blocking CFTR dephosphorylation, by interacting directly with CFTR, and/or by modulation of CFTR protein-protein interactions. Class V mutations affect the splicing machinery and generate both aberrantly and correctly spliced transcripts, the levels of which vary among different patients and among different organs of the same patient. Splicing factors that promote exon inclusion or factors that promote exon skipping can promote increases of correctly spliced transcripts, depending on the molecular defect. Inconsistent results were reported regarding the required level of corrected or mutated CFTR that had to be reached in order to achieve normal function.

摘要

囊性纤维化跨膜传导调节因子(CFTR)突变通过不同的分子机制导致CFTR蛋白产生和功能缺陷。突变可根据其破坏CFTR功能的机制进行分类。对CFTR功能障碍不同分子机制的这种理解为开发针对囊性纤维化(CF)突变特异性治疗的靶向药物提供了科学依据。I类突变是无义突变,导致存在提前终止密码子,从而导致产生不稳定的信使核糖核酸(mRNA),或导致从核糖体释放出短的、截短的且无功能的蛋白质。氨基糖苷类抗生素可通过破坏翻译保真度并允许氨基酸掺入来抑制提前终止密码子,从而使翻译继续至转录本的正常终止。II类突变导致CFTR在高尔基体中的加工和折叠受损。结果,突变的CFTR保留在内质网(ER)中,并最终通过质量控制机制被靶向降解。化学和分子伴侣,如4-苯丁酸钠,可稳定蛋白质结构,并使其逃离内质网中的降解并转运至细胞膜。III类突变破坏调节结构域的功能。CFTR对磷酸化或三磷酸腺苷(ATP)结合具有抗性。CFTR激活剂,如烷基黄嘌呤(CPX)和类黄酮染料木黄酮,可通过直接结合至核苷酸结合结构域来克服受影响的ATP结合。在携带IV类突变的患者中,CFTR的磷酸化导致氯化物转运减少。这些突变体总体细胞表面含量的增加可能会克服电导的相对降低。或者,从药理学上恢复天然氯化物孔特征可能是有效的。质膜上CFTR激活剂的作用可能是通过促进CFTR磷酸化、通过阻断CFTR去磷酸化、通过直接与CFTR相互作用和/或通过调节CFTR蛋白-蛋白相互作用来实现。V类突变影响剪接机制,并产生异常和正确剪接的转录本,其水平在不同患者之间以及同一患者的不同器官之间有所不同。促进外显子包含的剪接因子或促进外显子跳跃的因子可促进正确剪接转录本的增加,这取决于分子缺陷。关于为实现正常功能必须达到的校正或突变CFTR的所需水平,报道的结果并不一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验