Naudé Bronwen, Brzostowski Joseph A, Kimmel Alan R, Wellems Thomas E
Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-8132, USA.
J Biol Chem. 2005 Jul 8;280(27):25596-603. doi: 10.1074/jbc.M503227200. Epub 2005 May 9.
Chloroquine resistance in Plasmodium falciparum malaria results from mutations in PfCRT, a member of a unique family of transporters present in apicomplexan parasites and Dictyostelium discoideum. Mechanisms that have been proposed to explain chloroquine resistance are difficult to evaluate within malaria parasites. Here we report on the targeted expression of wild-type and mutant forms of PfCRT to acidic vesicles in D. discoideum. We show that wild-type PfCRT has minimal effect on the accumulation of chloroquine by D. discoideum, whereas forms of PfCRT carrying a key charge-loss mutation of lysine 76 (e.g. K76T) enable D. discoideum to expel chloroquine. As in P. falciparum, the chloroquine resistance phenotype conferred on transformed D. discoideum can be reversed by the channel-blocking agent verapamil. Although intravesicular pH levels in D. discoideum show small acidic changes with the expression of different forms of PfCRT, these changes would tend to promote intravesicular trapping of chloroquine (a weak base) and do not account for reduced drug accumulation in transformed D. discoideum. Our results instead support outward-directed chloroquine efflux for the mechanism of chloroquine resistance by mutant PfCRT. This mechanism shows structural specificity as D. discoideum transformants that expel chloroquine do not expel piperaquine, a bisquinoline analog of chloroquine used frequently against chloroquine-resistant parasites in Southeast Asia. PfCRT, nevertheless, may have some ability to act on quinine and quinidine. Transformed D. discoideum will be useful for further studies of the chloroquine resistance mechanism and may assist in the development and evaluation of new antimalarial drugs.
恶性疟原虫对氯喹的抗性源于PfCRT的突变,PfCRT是顶复门寄生虫和盘基网柄菌中存在的一个独特转运蛋白家族的成员。已提出的解释氯喹抗性的机制在疟原虫内难以评估。在此,我们报道了野生型和突变型PfCRT在盘基网柄菌中靶向酸性囊泡的表达。我们发现野生型PfCRT对盘基网柄菌积累氯喹的影响最小,而携带赖氨酸76关键电荷丢失突变(如K76T)的PfCRT形式能使盘基网柄菌排出氯喹。与恶性疟原虫一样,赋予转化后的盘基网柄菌的氯喹抗性表型可被通道阻滞剂维拉帕米逆转。尽管盘基网柄菌中的囊泡内pH水平随着不同形式的PfCRT的表达显示出微小的酸性变化,但这些变化倾向于促进氯喹(一种弱碱)在囊泡内的捕获,并且不能解释转化后的盘基网柄菌中药物积累的减少。相反,我们的结果支持突变型PfCRT通过向外的氯喹外排来产生氯喹抗性的机制。这种机制显示出结构特异性,因为排出氯喹的盘基网柄菌转化体不会排出哌喹,哌喹是氯喹的双喹啉类似物,在东南亚常用于对抗耐氯喹的寄生虫。然而,PfCRT可能对奎宁和奎尼丁有一定作用。转化后的盘基网柄菌将有助于进一步研究氯喹抗性机制,并可能有助于新抗疟药物的开发和评估。