Suppr超能文献

Wnt依赖的内耳形态发生调控由Shh的拮抗和支持作用保持平衡。

Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh.

作者信息

Riccomagno Martin M, Takada Shinji, Epstein Douglas J

机构信息

Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

Genes Dev. 2005 Jul 1;19(13):1612-23. doi: 10.1101/gad.1303905. Epub 2005 Jun 16.

Abstract

The inner ear is partitioned along its dorsal/ventral axis into vestibular and auditory organs, respectively. Gene expression studies suggest that this subdivision occurs within the otic vesicle, the tissue from which all inner ear structures are derived. While the specification of ventral otic fates is dependent on Shh secreted from the notochord, the nature of the signal responsible for dorsal otic development has not been described. In this study, we demonstrate that Wnt signaling is active in dorsal regions of the otic vesicle, where it functions to regulate the expression of genes (Dlx5/6 and Gbx2) necessary for vestibular morphogenesis. We further show that the source of Wnt impacting on dorsal otic development emanates from the dorsal hindbrain, and identify Wnt1 and Wnt3a as the specific ligands required for this function. The restriction of Wnt target genes to the dorsal otocyst is also influenced by Shh. Thus, a balance between Wnt and Shh signaling activities is key in distinguishing between vestibular and auditory cell types.

摘要

内耳沿其背腹轴分别被分隔为前庭器官和听觉器官。基因表达研究表明,这种细分发生在耳泡内,所有内耳结构均源自该组织。虽然腹侧耳命运的特化依赖于脊索分泌的 Sonic Hedgehog(Shh),但负责背侧耳发育的信号性质尚未被描述。在本研究中,我们证明 Wnt 信号在前庭泡的背侧区域活跃,在那里它发挥作用来调节前庭形态发生所必需的基因(Dlx5/6 和 Gbx2)的表达。我们进一步表明,影响背侧耳发育的 Wnt 来源来自背侧后脑,并确定 Wnt1 和 Wnt3a 为该功能所需的特定配体。Wnt 靶基因在前庭囊背侧的限制也受 Shh 的影响。因此,Wnt 和 Shh 信号活性之间的平衡是区分前庭和听觉细胞类型的关键。

相似文献

1
Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh.
Genes Dev. 2005 Jul 1;19(13):1612-23. doi: 10.1101/gad.1303905. Epub 2005 Jun 16.
2
Specification of the mammalian cochlea is dependent on Sonic hedgehog.
Genes Dev. 2002 Sep 15;16(18):2365-78. doi: 10.1101/gad.1013302.
3
Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear.
Development. 2007 May;134(9):1713-22. doi: 10.1242/dev.000760. Epub 2007 Mar 29.
4
The cochlear sensory epithelium derives from Wnt responsive cells in the dorsomedial otic cup.
Dev Biol. 2015 Mar 1;399(1):177-187. doi: 10.1016/j.ydbio.2015.01.001. Epub 2015 Jan 12.
5
Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear.
Development. 2005 May;132(9):2115-24. doi: 10.1242/dev.01796. Epub 2005 Mar 23.
6
Roles of Wnt8a during formation and patterning of the mouse inner ear.
Mech Dev. 2013 Feb;130(2-3):160-8. doi: 10.1016/j.mod.2012.09.009. Epub 2012 Oct 4.
7
Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium.
Development. 2007 Oct;134(20):3615-25. doi: 10.1242/dev.006627. Epub 2007 Sep 12.
8
Molecular mechanisms underlying inner ear patterning defects in kreisler mutants.
Dev Biol. 2006 Jan 15;289(2):308-17. doi: 10.1016/j.ydbio.2005.10.007. Epub 2005 Dec 1.
9
Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development.
Development. 2011 Sep;138(18):3967-76. doi: 10.1242/dev.066126. Epub 2011 Aug 10.
10
The role of Six1 in mammalian auditory system development.
Development. 2003 Sep;130(17):3989-4000. doi: 10.1242/dev.00628.

引用本文的文献

2
Exploring AAV-Mediated Gene Therapy for Inner Ear Diseases: from Preclinical Success to Clinical Potential.
Adv Sci (Weinh). 2025 Sep;12(33):e08397. doi: 10.1002/advs.202408397. Epub 2025 Jun 20.
4
Multifaceted roles of sonic hedgehog signaling in mammalian inner ear development.
Dev Biol. 2025 Aug;524:97-104. doi: 10.1016/j.ydbio.2025.05.007. Epub 2025 May 9.
5
Evolutionary analysis of genes associated with the sense of balance in semi-aquatic mammals.
BMC Ecol Evol. 2025 Jan 10;25(1):8. doi: 10.1186/s12862-024-02345-9.
6
Advances in Microfluidic Cochlea-On-A-Chip.
Adv Sci (Weinh). 2025 Aug;12(29):e2406077. doi: 10.1002/advs.202406077. Epub 2024 Dec 23.
7
Molecular Characterization of Subdomain Specification of Cochlear Duct Based on Foxg1 and Gata3.
Int J Mol Sci. 2024 Nov 26;25(23):12700. doi: 10.3390/ijms252312700.
9
The multifaceted links between hearing loss and chronic kidney disease.
Nat Rev Nephrol. 2024 May;20(5):295-312. doi: 10.1038/s41581-024-00808-2. Epub 2024 Jan 29.
10

本文引用的文献

1
Gbx2 is required for the morphogenesis of the mouse inner ear: a downstream candidate of hindbrain signaling.
Development. 2005 May;132(10):2309-18. doi: 10.1242/dev.01804. Epub 2005 Apr 13.
2
FGF8 initiates inner ear induction in chick and mouse.
Genes Dev. 2005 Mar 1;19(5):603-13. doi: 10.1101/gad.1273605.
4
From placode to polarization: new tunes in inner ear development.
Development. 2004 Sep;131(17):4119-30. doi: 10.1242/dev.01339.
5
The development of semicircular canals in the inner ear: role of FGFs in sensory cristae.
Development. 2004 Sep;131(17):4201-11. doi: 10.1242/dev.01292. Epub 2004 Jul 27.
6
A nuclear function for armadillo/beta-catenin.
PLoS Biol. 2004 Apr;2(4):E95. doi: 10.1371/journal.pbio.0020095. Epub 2004 Feb 10.
7
Six1 controls patterning of the mouse otic vesicle.
Development. 2004 Feb;131(3):551-62. doi: 10.1242/dev.00943. Epub 2003 Dec 24.
8
Requirements for FGF3 and FGF10 during inner ear formation.
Development. 2003 Dec;130(25):6329-38. doi: 10.1242/dev.00881.
9
Requirement for a nuclear function of beta-catenin in Wnt signaling.
Mol Cell Biol. 2003 Dec;23(23):8462-70. doi: 10.1128/MCB.23.23.8462-8470.2003.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验