Khatri Purvesh, Drăghici Sorin
Department of Computer Science, Wayne State University, Detroit, MI 48202, USA.
Bioinformatics. 2005 Sep 15;21(18):3587-95. doi: 10.1093/bioinformatics/bti565. Epub 2005 Jun 30.
Independent of the platform and the analysis methods used, the result of a microarray experiment is, in most cases, a list of differentially expressed genes. An automatic ontological analysis approach has been recently proposed to help with the biological interpretation of such results. Currently, this approach is the de facto standard for the secondary analysis of high throughput experiments and a large number of tools have been developed for this purpose. We present a detailed comparison of 14 such tools using the following criteria: scope of the analysis, visualization capabilities, statistical model(s) used, correction for multiple comparisons, reference microarrays available, installation issues and sources of annotation data. This detailed analysis of the capabilities of these tools will help researchers choose the most appropriate tool for a given type of analysis. More importantly, in spite of the fact that this type of analysis has been generally adopted, this approach has several important intrinsic drawbacks. These drawbacks are associated with all tools discussed and represent conceptual limitations of the current state-of-the-art in ontological analysis. We propose these as challenges for the next generation of secondary data analysis tools.
无论使用何种平台和分析方法,在大多数情况下,微阵列实验的结果都是一份差异表达基因列表。最近有人提出了一种自动本体分析方法,以帮助对这类结果进行生物学解释。目前,这种方法是高通量实验二次分析的实际标准,并且已经为此开发了大量工具。我们使用以下标准对14种此类工具进行了详细比较:分析范围、可视化能力、使用的统计模型、多重比较校正、可用的参考微阵列、安装问题以及注释数据源。对这些工具功能的详细分析将有助于研究人员为给定类型的分析选择最合适的工具。更重要的是,尽管这种类型的分析已被普遍采用,但这种方法存在几个重要的内在缺点。这些缺点与所讨论的所有工具相关,代表了当前本体分析技术水平的概念性限制。我们将这些作为对下一代二次数据分析工具的挑战。