Suppr超能文献

基因表达数据的本体分析:当前工具、局限性及开放问题

Ontological analysis of gene expression data: current tools, limitations, and open problems.

作者信息

Khatri Purvesh, Drăghici Sorin

机构信息

Department of Computer Science, Wayne State University, Detroit, MI 48202, USA.

出版信息

Bioinformatics. 2005 Sep 15;21(18):3587-95. doi: 10.1093/bioinformatics/bti565. Epub 2005 Jun 30.

Abstract

Independent of the platform and the analysis methods used, the result of a microarray experiment is, in most cases, a list of differentially expressed genes. An automatic ontological analysis approach has been recently proposed to help with the biological interpretation of such results. Currently, this approach is the de facto standard for the secondary analysis of high throughput experiments and a large number of tools have been developed for this purpose. We present a detailed comparison of 14 such tools using the following criteria: scope of the analysis, visualization capabilities, statistical model(s) used, correction for multiple comparisons, reference microarrays available, installation issues and sources of annotation data. This detailed analysis of the capabilities of these tools will help researchers choose the most appropriate tool for a given type of analysis. More importantly, in spite of the fact that this type of analysis has been generally adopted, this approach has several important intrinsic drawbacks. These drawbacks are associated with all tools discussed and represent conceptual limitations of the current state-of-the-art in ontological analysis. We propose these as challenges for the next generation of secondary data analysis tools.

摘要

无论使用何种平台和分析方法,在大多数情况下,微阵列实验的结果都是一份差异表达基因列表。最近有人提出了一种自动本体分析方法,以帮助对这类结果进行生物学解释。目前,这种方法是高通量实验二次分析的实际标准,并且已经为此开发了大量工具。我们使用以下标准对14种此类工具进行了详细比较:分析范围、可视化能力、使用的统计模型、多重比较校正、可用的参考微阵列、安装问题以及注释数据源。对这些工具功能的详细分析将有助于研究人员为给定类型的分析选择最合适的工具。更重要的是,尽管这种类型的分析已被普遍采用,但这种方法存在几个重要的内在缺点。这些缺点与所讨论的所有工具相关,代表了当前本体分析技术水平的概念性限制。我们将这些作为对下一代二次数据分析工具的挑战。

相似文献

1
Ontological analysis of gene expression data: current tools, limitations, and open problems.
Bioinformatics. 2005 Sep 15;21(18):3587-95. doi: 10.1093/bioinformatics/bti565. Epub 2005 Jun 30.
2
Visualization methods for statistical analysis of microarray clusters.
BMC Bioinformatics. 2005 May 12;6:115. doi: 10.1186/1471-2105-6-115.
3
Integrative Array Analyzer: a software package for analysis of cross-platform and cross-species microarray data.
Bioinformatics. 2006 Jul 1;22(13):1665-7. doi: 10.1093/bioinformatics/btl163. Epub 2006 May 3.
4
MILANO--custom annotation of microarray results using automatic literature searches.
BMC Bioinformatics. 2005 Jan 20;6:12. doi: 10.1186/1471-2105-6-12.
6
ArrayQuest: a web resource for the analysis of DNA microarray data.
BMC Bioinformatics. 2005 Dec 1;6:287. doi: 10.1186/1471-2105-6-287.
7
Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.
Comput Methods Programs Biomed. 2013 Aug;111(2):402-9. doi: 10.1016/j.cmpb.2013.04.006. Epub 2013 May 31.
10
WebArray: an online platform for microarray data analysis.
BMC Bioinformatics. 2005 Dec 21;6:306. doi: 10.1186/1471-2105-6-306.

引用本文的文献

1
Efficient gene set analysis for DNA methylation addressing probe dependency and bias.
Bioinformatics. 2025 Aug 2;41(8). doi: 10.1093/bioinformatics/btaf422.
3
MENTOR: Multiplex Embedding of Networks for Team-Based Omics Research.
bioRxiv. 2024 Jul 22:2024.07.17.603821. doi: 10.1101/2024.07.17.603821.
4
SGCP: a spectral self-learning method for clustering genes in co-expression networks.
BMC Bioinformatics. 2024 Jul 2;25(1):230. doi: 10.1186/s12859-024-05848-w.
7
DExplore: An Online Tool for Detecting Differentially Expressed Genes from mRNA Microarray Experiments.
Biology (Basel). 2024 May 16;13(5):351. doi: 10.3390/biology13050351.
8
Proteomes of plasmodium knowlesi early and late ring-stage parasites and infected host erythrocytes.
J Proteomics. 2024 Jun 30;302:105197. doi: 10.1016/j.jprot.2024.105197. Epub 2024 May 15.
9
StellarPath: Hierarchical-vertical multi-omics classifier synergizes stable markers and interpretable similarity networks for patient profiling.
PLoS Comput Biol. 2024 Apr 12;20(4):e1012022. doi: 10.1371/journal.pcbi.1012022. eCollection 2024 Apr.
10
Comparative Transcriptome Analysis Reveals the Role of Ribosome Reduction in Impeding Oogenesis in Female Triploid Crassostrea Gigas.
Mar Biotechnol (NY). 2024 Feb;26(1):125-135. doi: 10.1007/s10126-024-10283-2. Epub 2024 Jan 13.

本文引用的文献

1
Gene Expression Correlation and Gene Ontology-Based Similarity: An Assessment of Quantitative Relationships.
Proc IEEE Symp Comput Intell Bioinforma Comput Biol. 2004 Oct 7;2004:25-31. doi: 10.1109/CIBCB.2004.1393927.
2
Recent additions and improvements to the Onto-Tools.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W762-5. doi: 10.1093/nar/gki472.
3
An evaluation of GO annotation retrieval for BioCreAtIvE and GOA.
BMC Bioinformatics. 2005;6 Suppl 1(Suppl 1):S17. doi: 10.1186/1471-2105-6-S1-S17. Epub 2005 May 24.
4
A semantic analysis of the annotations of the human genome.
Bioinformatics. 2005 Aug 15;21(16):3416-21. doi: 10.1093/bioinformatics/bti538. Epub 2005 Jun 14.
5
GOToolBox: functional analysis of gene datasets based on Gene Ontology.
Genome Biol. 2004;5(12):R101. doi: 10.1186/gb-2004-5-12-r101. Epub 2004 Nov 26.
7
FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes.
Bioinformatics. 2004 Mar 1;20(4):578-80. doi: 10.1093/bioinformatics/btg455. Epub 2004 Jan 22.
9
GOstat: find statistically overrepresented Gene Ontologies within a group of genes.
Bioinformatics. 2004 Jun 12;20(9):1464-5. doi: 10.1093/bioinformatics/bth088. Epub 2004 Feb 12.
10
CLENCH: a program for calculating Cluster ENriCHment using the Gene Ontology.
Bioinformatics. 2004 May 1;20(7):1196-7. doi: 10.1093/bioinformatics/bth056. Epub 2004 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验