Kerner Michael J, Naylor Dean J, Ishihama Yasushi, Maier Tobias, Chang Hung-Chun, Stines Anna P, Georgopoulos Costa, Frishman Dmitrij, Hayer-Hartl Manajit, Mann Matthias, Hartl F Ulrich
Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
Cell. 2005 Jul 29;122(2):209-20. doi: 10.1016/j.cell.2005.05.028.
The E. coli chaperonin GroEL and its cofactor GroES promote protein folding by sequestering nonnative polypeptides in a cage-like structure. Here we define the contribution of this system to protein folding across the entire E. coli proteome. Approximately 250 different proteins interact with GroEL, but most of these can utilize either GroEL or the upstream chaperones trigger factor (TF) and DnaK for folding. Obligate GroEL-dependence is limited to only approximately 85 substrates, including 13 essential proteins, and occupying more than 75% of GroEL capacity. These proteins appear to populate kinetically trapped intermediates during folding; they are stabilized by TF/DnaK against aggregation but reach native state only upon transfer to GroEL/GroES. Interestingly, substantially enriched among the GroEL substrates are proteins with (betaalpha)8 TIM-barrel domains. We suggest that the chaperonin system may have facilitated the evolution of this fold into a versatile platform for the implementation of numerous enzymatic functions.
大肠杆菌伴侣蛋白GroEL及其辅因子GroES通过将非天然多肽隔离在笼状结构中来促进蛋白质折叠。在此,我们确定了该系统对整个大肠杆菌蛋白质组中蛋白质折叠的贡献。约250种不同的蛋白质与GroEL相互作用,但其中大多数蛋白质可利用GroEL或上游伴侣蛋白触发因子(TF)和DnaK进行折叠。完全依赖GroEL的情况仅限于约85种底物,包括13种必需蛋白,且占据了GroEL容量的75%以上。这些蛋白质在折叠过程中似乎会形成动力学捕获的中间体;它们通过TF/DnaK得以稳定,防止聚集,但只有转移到GroEL/GroES时才会达到天然状态。有趣的是,在GroEL底物中大量富集的是具有(βα)8 TIM桶状结构域的蛋白质。我们认为,伴侣蛋白系统可能促进了这种折叠结构演变成一个用于实现多种酶功能的通用平台。