Suppr超能文献

探究单个海马突触中的囊泡动力学。

Probing vesicle dynamics in single hippocampal synapses.

作者信息

Shtrahman Matthew, Yeung Chuck, Nauen David W, Bi Guo-qiang, Wu Xiao-Lun

机构信息

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA.

出版信息

Biophys J. 2005 Nov;89(5):3615-27. doi: 10.1529/biophysj.105.059295. Epub 2005 Aug 19.

Abstract

We use fluorescence correlation spectroscopy and fluorescence recovery after photobleaching to study vesicle dynamics inside the synapses of cultured hippocampal neurons labeled with the fluorescent vesicle marker FM 1-43. These studies show that when the cell is electrically at rest, only a small population of vesicles is mobile, taking seconds to traverse the synapse. Applying the phosphatase inhibitor okadaic acid causes vesicles to diffuse freely, moving 30 times faster than vesicles in control synapses. These results suggest that vesicles move sluggishly due to binding to elements of the synaptic cytomatrix and that this binding is altered by phosphorylation. Motivated by these results, a model is constructed consisting of diffusing vesicles that bind reversibly to the cytomatrix. This stick-and-diffuse model accounts for the fluorescence correlation spectroscopy and fluorescence recovery after photobleaching data, and also predicts the well-known exponential refilling of the readily releasable pool. Our measurements suggest that the movement of vesicles to the active zone is the rate-limiting step in this process.

摘要

我们使用荧光相关光谱法和光漂白后的荧光恢复技术,来研究用荧光囊泡标记物FM 1-43标记的培养海马神经元突触内的囊泡动力学。这些研究表明,当细胞处于静息电状态时,只有一小部分囊泡是可移动的,需要数秒才能穿过突触。应用磷酸酶抑制剂冈田酸会使囊泡自由扩散,其移动速度比对照突触中的囊泡快30倍。这些结果表明,囊泡由于与突触细胞基质的成分结合而移动缓慢,并且这种结合会因磷酸化而改变。基于这些结果,构建了一个由可逆结合到细胞基质的扩散囊泡组成的模型。这个“黏附-扩散”模型解释了荧光相关光谱法和光漂白后的荧光恢复数据,并且还预测了易释放池的众所周知的指数式再填充。我们的测量表明,囊泡向活性区的移动是这个过程中的限速步骤。

相似文献

1
Probing vesicle dynamics in single hippocampal synapses.
Biophys J. 2005 Nov;89(5):3615-27. doi: 10.1529/biophysj.105.059295. Epub 2005 Aug 19.
2
An isolated pool of vesicles recycles at rest and drives spontaneous neurotransmission.
Neuron. 2005 Feb 17;45(4):563-73. doi: 10.1016/j.neuron.2004.12.056.
3
Visualization of synaptic vesicle movement in intact synaptic boutons using fluorescence fluctuation spectroscopy.
Biophys J. 2005 Sep;89(3):2091-102. doi: 10.1529/biophysj.105.061663. Epub 2005 Jun 24.
5
Dynamics of synaptic vesicles in cultured spinal cord neurons in relationship to synaptogenesis.
Mol Cell Neurosci. 1996 Jun;7(6):443-52. doi: 10.1006/mcne.1996.0032.
6
Inhibition of exocytosis or endocytosis blocks activity-dependent redistribution of synapsin.
J Neurochem. 2012 Jan;120(2):248-58. doi: 10.1111/j.1471-4159.2011.07579.x. Epub 2011 Dec 2.
7
Imaging phluorin-based probes at hippocampal synapses.
Methods Mol Biol. 2008;457:293-303. doi: 10.1007/978-1-59745-261-8_22.
8
Reversal of synaptic vesicle docking at central synapses.
Nat Neurosci. 1999 Jun;2(6):503-7. doi: 10.1038/9149.
9
Pool-independent labelling of synaptic vesicle exocytosis with single vesicle resolution in rat hippocampal neurons.
J Neurosci Methods. 2012 Apr 15;205(2):258-64. doi: 10.1016/j.jneumeth.2012.01.011. Epub 2012 Jan 28.
10
Synaptic vesicle dynamics in the mossy fiber-CA3 presynaptic terminals of mouse hippocampus.
Neurosci Res. 2007 Dec;59(4):481-90. doi: 10.1016/j.neures.2007.08.019. Epub 2007 Sep 12.

引用本文的文献

1
Actomyosin-mediated inhibition of synaptic vesicle release under CBR activation.
Transl Psychiatry. 2024 Aug 21;14(1):335. doi: 10.1038/s41398-024-03017-4.
3
Statistical analysis of the autocorrelation function in fluorescence correlation spectroscopy.
Biophys J. 2024 Mar 19;123(6):667-680. doi: 10.1016/j.bpj.2024.01.011. Epub 2024 Jan 12.
4
A comparative analysis of the mobility of 45 proteins in the synaptic bouton.
EMBO J. 2020 Aug 17;39(16):e104596. doi: 10.15252/embj.2020104596. Epub 2020 Jul 6.
5
Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules.
Nat Protoc. 2017 Dec;12(12):2590-2622. doi: 10.1038/nprot.2017.116. Epub 2017 Nov 30.
6
Activity-Dependence of Synaptic Vesicle Dynamics.
J Neurosci. 2017 Nov 1;37(44):10597-10610. doi: 10.1523/JNEUROSCI.0383-17.2017. Epub 2017 Sep 27.
8
Three-dimensional imaging of Drosophila motor synapses reveals ultrastructural organizational patterns.
J Neurogenet. 2016 Sep-Dec;30(3-4):237-246. doi: 10.1080/01677063.2016.1253693.
10
Physical determinants of vesicle mobility and supply at a central synapse.
Elife. 2016 Aug 19;5:e15133. doi: 10.7554/eLife.15133.

本文引用的文献

1
Synaptobrevin is essential for fast synaptic-vesicle endocytosis.
Nat Cell Biol. 2004 Nov;6(11):1102-8. doi: 10.1038/ncb1185. Epub 2004 Oct 10.
2
Streamlined synaptic vesicle cycle in cone photoreceptor terminals.
Neuron. 2004 Mar 4;41(5):755-66. doi: 10.1016/s0896-6273(04)00088-1.
3
High mobility of vesicles supports continuous exocytosis at a ribbon synapse.
Curr Biol. 2004 Feb 3;14(3):173-83. doi: 10.1016/j.cub.2003.12.053.
4
TIR-FCS: staying on the surface can sometimes be better.
Biophys J. 2003 Nov;85(5):2783-4. doi: 10.1016/S0006-3495(03)74700-6.
5
Single synaptic vesicles fusing transiently and successively without loss of identity.
Nature. 2003 Jun 5;423(6940):643-7. doi: 10.1038/nature01686.
7
Zero-mode waveguides for single-molecule analysis at high concentrations.
Science. 2003 Jan 31;299(5607):682-6. doi: 10.1126/science.1079700.
8
Actin has a molecular scaffolding, not propulsive, role in presynaptic function.
Nat Neurosci. 2003 Feb;6(2):127-35. doi: 10.1038/nn1002.
9
Okadaic acid disrupts synaptic vesicle trafficking in a ribbon-type synapse.
J Neurochem. 2002 Sep;82(5):1047-57. doi: 10.1046/j.1471-4159.2002.01029.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验