Boschi Manuela, Belloni Massimo, Robbins Leonard G
Dipartimento di Biologia Evolutiva, Università degli Studi di Siena, 53100 Siena, Italy.
Genetics. 2006 Jan;172(1):305-16. doi: 10.1534/genetics.104.036806. Epub 2005 Oct 11.
We have followed sex and second chromosome disjunction, and the effects of these chromosomes on sperm function, in four genotypes: wild-type males, males deficient for the Y-linked crystal locus, males with an X chromosome heterochromatic deficiency that deletes all X-Y pairing sites, and males with both deficiencies. Both mutant situations provoke chromosome misbehavior, but the disjunctional defects are quite different. Deficiency of the X heterochromatin, consonant with the lack of pairing sites, mostly disrupts X-Y disjunction with a decidedly second-level effect on major autosome behavior. Deleting crystal, consonant with the cytological picture of postpairing chromatin-condensation problems, disrupts sex and autosome disjunction equally. Even when the mutant-induced nondisjunction has very different mechanics, however, and even more importantly, even in the wild type, there is strong, and similar, meiotic drive. The presence of meiotic drive when disjunction is disrupted by distinctly different mechanisms supports the notion that drive is a normal cellular response to meiotic problems rather than a direct effect of particular mutants. Most surprisingly, in both wild-type and crystal-deficient males the Y chromosome moves to the opposite pole from a pair of nondisjoined second chromosomes nearly 100% of the time. This nonhomologous interaction is, however, absent when the X heterochromatin is deleted. The nonhomologous disjunction of the sex and second chromosomes may be the genetic consequence of the chromosomal compartmentalization seen by deconvolution microscopy, and the absence of Y-2 disjunction when the X heterochromatin is deleted suggests that XY pairing itself, or a previously unrecognized heterochromatic function, is prerequisite to this macrostructural organization of the chromosomes.
我们研究了四种基因型中的性别和第二条染色体分离情况,以及这些染色体对精子功能的影响:野生型雄性、Y连锁晶体基因座缺失的雄性、X染色体异染色质缺失(删除所有X-Y配对位点)的雄性以及两种缺失情况兼具的雄性。两种突变情况都会引发染色体行为异常,但分离缺陷却大不相同。X异染色质的缺失,与配对位点的缺乏一致,主要破坏X-Y分离,对主要常染色体行为产生明显的次级影响。删除晶体基因,与配对后染色质浓缩问题的细胞学图像一致,对性染色体和常染色体分离的破坏程度相同。然而,即使突变诱导的不分离机制非常不同,更重要的是,即使在野生型中,也存在强烈且相似的减数分裂驱动。当分离因明显不同的机制而被破坏时,减数分裂驱动的存在支持了这样一种观点,即驱动是细胞对减数分裂问题的正常反应,而不是特定突变的直接影响。最令人惊讶的是,在野生型和晶体基因缺失的雄性中,Y染色体几乎100%的时间会移向与一对未分离的第二条染色体相对的极。然而,当X异染色质被删除时,这种非同源相互作用不存在。性染色体和第二条染色体的非同源分离可能是去卷积显微镜观察到的染色体区室化的遗传后果,而当X异染色质被删除时Y-2分离的缺失表明X-Y配对本身,或一种以前未被认识的异染色质功能,是染色体这种宏观结构组织的先决条件。