Suppr超能文献

Isw2染色质重塑复合物在体内进行染色质相互作用的两种不同机制。

Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo.

作者信息

Fazzio Thomas G, Gelbart Marnie E, Tsukiyama Toshio

机构信息

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Mail stop A1-162, P.O. Box 19024, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.

出版信息

Mol Cell Biol. 2005 Nov;25(21):9165-74. doi: 10.1128/MCB.25.21.9165-9174.2005.

Abstract

We have previously shown that Saccharomyces cerevisiae Isw2 complex slides nucleosomes to remodel chromatin in vivo. Our data suggested a model in which Isw2 complex binds the histone octamer and DNA separately to generate the force necessary for nucleosome movement. Here we find that the histone H4 "basic patch" is the only portion of any amino-terminal histone tail required for both target-specific association of Isw2 complex with chromatin and chromatin remodeling in vivo, whereas it is dispensable for basal levels of chromatin binding. Similarly, we find that nonremodeled chromatin structure and integrity of Isw2 complex are required only for target-specific association of Isw2 with chromatin. These data demonstrate fundamental differences between the target-specific and basal modes of chromatin binding by Isw2 complex in vivo and suggest that only the former involves contributions from DNA, histone H4, and sequence-specific DNA binding proteins. We propose a model for target recognition and chromatin remodeling by Isw2 complex in vivo.

摘要

我们之前已经表明,酿酒酵母Isw2复合物在体内滑动核小体以重塑染色质。我们的数据提出了一个模型,即Isw2复合物分别结合组蛋白八聚体和DNA,以产生核小体移动所需的力。在这里,我们发现组蛋白H4“碱性补丁”是Isw2复合物与染色质在体内进行靶标特异性结合以及染色质重塑所必需的任何氨基末端组蛋白尾巴的唯一部分,而对于染色质结合的基础水平则是可有可无的。同样,我们发现未重塑的染色质结构和Isw2复合物的完整性仅对于Isw2与染色质的靶标特异性结合是必需的。这些数据证明了Isw2复合物在体内与染色质结合的靶标特异性模式和基础模式之间的根本差异,并表明只有前者涉及DNA、组蛋白H4和序列特异性DNA结合蛋白的作用。我们提出了一个Isw2复合物在体内进行靶标识别和染色质重塑的模型。

相似文献

1
Two distinct mechanisms of chromatin interaction by the Isw2 chromatin remodeling complex in vivo.
Mol Cell Biol. 2005 Nov;25(21):9165-74. doi: 10.1128/MCB.25.21.9165-9174.2005.
2
Histone Octamer Structure Is Altered Early in ISW2 ATP-Dependent Nucleosome Remodeling.
Cell Rep. 2019 Jul 2;28(1):282-294.e6. doi: 10.1016/j.celrep.2019.05.106.
3
Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2.
Mol Cell Biol. 2004 Nov;24(22):10047-57. doi: 10.1128/MCB.24.22.10047-10057.2004.
4
Regulation of ISW2 by concerted action of histone H4 tail and extranucleosomal DNA.
Mol Cell Biol. 2006 Oct;26(20):7388-96. doi: 10.1128/MCB.01159-06.
5
Basis of specificity for a conserved and promiscuous chromatin remodeling protein.
Elife. 2021 Feb 12;10:e64061. doi: 10.7554/eLife.64061.
6
A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression.
Mol Cell Biol. 2009 Jun;29(12):3255-65. doi: 10.1128/MCB.01741-08. Epub 2009 Apr 6.
7
Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism.
Mol Cell. 2003 Nov;12(5):1333-40. doi: 10.1016/s1097-2765(03)00436-2.
9
Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome.
Nat Struct Mol Biol. 2006 Apr;13(4):339-46. doi: 10.1038/nsmb1071. Epub 2006 Mar 5.
10
Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling.
EMBO J. 2004 May 19;23(10):2092-104. doi: 10.1038/sj.emboj.7600220. Epub 2004 May 6.

引用本文的文献

5
Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes.
Nat Rev Mol Cell Biol. 2017 Jul;18(7):407-422. doi: 10.1038/nrm.2017.26. Epub 2017 May 17.
7
Active promoters give rise to false positive 'Phantom Peaks' in ChIP-seq experiments.
Nucleic Acids Res. 2015 Aug 18;43(14):6959-68. doi: 10.1093/nar/gkv637. Epub 2015 Jun 27.
9
Insights into chromatin structure and dynamics in plants.
Biology (Basel). 2013 Nov 28;2(4):1378-410. doi: 10.3390/biology2041378.
10
ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4.
PLoS One. 2014 Feb 6;9(2):e88411. doi: 10.1371/journal.pone.0088411. eCollection 2014.

本文引用的文献

3
Reaction cycle of the yeast Isw2 chromatin remodeling complex.
EMBO J. 2004 Oct 1;23(19):3836-43. doi: 10.1038/sj.emboj.7600364. Epub 2004 Sep 9.
4
Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling.
EMBO J. 2004 May 19;23(10):2092-104. doi: 10.1038/sj.emboj.7600220. Epub 2004 May 6.
5
A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin.
PLoS Biol. 2004 May;2(5):E131. doi: 10.1371/journal.pbio.0020131. Epub 2004 Mar 23.
6
Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo.
Mol Cell Biol. 2004 Apr;24(7):2605-13. doi: 10.1128/MCB.24.7.2605-2613.2004.
7
Nucleosome remodeling: one mechanism, many phenomena?
Biochim Biophys Acta. 2004 Mar 15;1677(1-3):58-63. doi: 10.1016/j.bbaexp.2003.10.011.
8
Assembly of yeast chromatin using ISWI complexes.
Methods Enzymol. 2004;375:88-102. doi: 10.1016/s0076-6879(03)75006-x.
9
Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities.
Mol Cell. 2003 Dec;12(6):1599-606. doi: 10.1016/s1097-2765(03)00499-4.
10
A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1.
Mol Cell. 2003 Dec;12(6):1565-76. doi: 10.1016/s1097-2765(03)00497-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验