Zhang Xianzhong, Xiong Zhengming, Wu Yun, Cai Weibo, Tseng Jeffery R, Gambhir Sanjiv S, Chen Xiaoyuan
Molecular Imaging Program at Stanford, MIPS, and Bio-X Program, Department of Radiology, Stanford University, California 94305-5484, USA.
J Nucl Med. 2006 Jan;47(1):113-21.
The development of noninvasive methods to visualize and quantify integrin alpha(v)beta(3) expression in vivo appears to be crucial for the success of antiangiogenic therapy based on integrin antagonism. Precise documentation of integrin receptor levels will allow appropriate selection of patients who will most likely benefit from an antiintegrin treatment regimen. Imaging can also be used to provide an optimal dosage and time course for treatment based on receptor occupancy studies. In addition, imaging integrin expression will be important to evaluate antiintegrin treatment efficacy and to develop new therapeutic drugs with favorable tumor targeting and in vivo kinetics. We labeled the dimeric RGD peptide Ec(RGDyK) with (18)F and evaluated its tumor-targeting efficacy and pharmacokinetics of (18)F-FB-Ec(RGDyK) ((18)F-FRGD2).
Ec(RGDyK) was labeled with (18)F by conjugation coupling with N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB) under a slightly basic condition. The in vivo metabolic stability of (18)F-FRGD2 was determined. The diagnostic value after injection of (18)F-FRGD2 was evaluated in various xenograft models by dynamic microPET followed by ex vivo quantification of tumor integrin level.
Starting with (18)F(-) Kryptofix 2.2.2./K(2)CO(3) solution, the total reaction time for (18)F-FRGD2, including final high-performance liquid chromatography purification, is about 200 +/- 20 min. Typical decay-corrected radiochemical yield is 23% +/- 2% (n = 20). (18)F-FRGD2 is metabolically stable. The binding potential extrapolated from graphical analysis of PET data and Logan plot correlates well with the receptor density measured by sodium dodecyl sulfate polyacrylamide electrophoresis and autoradiography in various xenograft models. The tumor-to-background ratio at 1 h after injection of (18)F-FRGD2 also gives a good linear relationship with the tumor tissue integrin level.
The dimeric RGD peptide tracer (18)F-FRGD2, with high integrin specificity and favorable excretion profile, may be translated into the clinic for imaging integrin alpha(v)beta(3) expression. The binding potential calculated from simplified tracer kinetic modeling such as the Logan plot appears to be an excellent indicator of tumor integrin density.
开发非侵入性方法以在体内可视化和定量整合素α(v)β(3)的表达,对于基于整合素拮抗作用的抗血管生成治疗的成功似乎至关重要。整合素受体水平的精确记录将有助于适当选择最有可能从抗整合素治疗方案中受益的患者。成像还可用于根据受体占有率研究提供治疗的最佳剂量和时间进程。此外,成像整合素表达对于评估抗整合素治疗效果以及开发具有良好肿瘤靶向性和体内动力学的新治疗药物也很重要。我们用(18)F标记二聚体RGD肽Ec(RGDyK),并评估了(18)F-FB-Ec(RGDyK)((18)F-FRGD2)的肿瘤靶向效果和药代动力学。
在弱碱性条件下,通过与N-琥珀酰亚胺基-4-(18)F-氟苯甲酸酯((18)F-SFB)共轭偶联,用(18)F标记Ec(RGDyK)。测定了(18)F-FRGD2的体内代谢稳定性。通过动态微型PET在各种异种移植模型中评估注射(18)F-FRGD2后的诊断价值,随后对肿瘤整合素水平进行离体定量。
从(18)F(-) Kryptofix 2.2.2./K(2)CO(3)溶液开始,包括最终的高效液相色谱纯化,(18)F-FRGD2的总反应时间约为200±20分钟。典型的衰变校正放射化学产率为23%±2%(n = 20)。(18)F-FRGD2代谢稳定。从PET数据的图形分析和洛根图推断的结合潜力与通过十二烷基硫酸钠聚丙烯酰胺电泳和放射自显影在各种异种移植模型中测量的受体密度密切相关。注射(18)F-FRGD2后1小时的肿瘤与背景比值也与肿瘤组织整合素水平呈现良好的线性关系。
二聚体RGD肽示踪剂(18)F-FRGD2具有高整合素特异性和良好的排泄特性,可能转化为临床用于成像整合素α(v)β(3)的表达。通过简化的示踪剂动力学模型如洛根图计算的结合潜力似乎是肿瘤整合素密度的极佳指标。