Suppr超能文献

蛋白激酶A(PKA)和环磷酸腺苷直接激活的交换蛋白(EPAC)对钠-质子交换体3(NHE3)的调节作用

Regulation of sodium-proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (EPAC).

作者信息

Honegger Katharina J, Capuano Paola, Winter Christian, Bacic Desa, Stange Gerti, Wagner Carsten A, Biber Jürg, Murer Heini, Hernando Nati

机构信息

Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):803-8. doi: 10.1073/pnas.0503562103. Epub 2006 Jan 9.

Abstract

The Na(+)/H(+) exchanger 3 (NHE3) is expressed in the brush border membrane (BBM) of proximal tubules (PT). Its activity is down-regulated on increases in intracellular cAMP levels. The aim of this study was to investigate the contribution of the protein kinase A (PKA) and the exchange protein directly activated by cAMP (EPAC) dependent pathways in the regulation of NHE3 by adenosine 3',5'-cyclic monophosphate (cAMP). Opossum kidney cells and murine kidney slices were treated with cAMP analogs, which selectively activate either PKA or EPAC. Activation of either pathway resulted in an inhibition of NHE3 activity. The EPAC-induced effect was independent of PKA as indicated by the lack of activation of the kinase and the insensitivity to the PKA inhibitor H89. Both PKA and EPAC inhibited NHE3 activity without inducing changes in the expression of the transporter in BBM. Activation of PKA, but not of EPAC, led to an increase of NHE3 phosphorylation. In contrast, activation of PKA, but not of EPAC, inhibited renal type IIa Na(+)-coupled inorganic phosphate cotransporter (NaPi-IIa), another Na-dependent transporter expressed in proximal BBM. PKA, but not EPAC, induced the retrieval of NaPi-IIa from BBM. Our results suggest that EPAC activation may represent a previously unrecognized mechanism involved in the cAMP regulation of NHE3, whereas regulation of NaPi-IIa is mediated by PKA but not by EPAC.

摘要

钠氢交换体3(NHE3)表达于近端肾小管(PT)的刷状缘膜(BBM)。其活性在细胞内cAMP水平升高时会下调。本研究的目的是探讨蛋白激酶A(PKA)和cAMP直接激活的交换蛋白(EPAC)依赖途径在3',5'-环磷酸腺苷(cAMP)对NHE3调节中的作用。用cAMP类似物处理负鼠肾细胞和小鼠肾切片,这些类似物可选择性激活PKA或EPAC。激活任一途径均导致NHE3活性受到抑制。激酶未被激活以及对PKA抑制剂H89不敏感表明,EPAC诱导的效应独立于PKA。PKA和EPAC均抑制NHE3活性,且未引起BBM中转运蛋白表达的变化。PKA的激活而非EPAC的激活导致NHE3磷酸化增加。相反,PKA的激活而非EPAC的激活抑制了肾IIa型钠偶联无机磷酸共转运体(NaPi-IIa),这是另一种在近端BBM中表达的钠依赖性转运体。PKA而非EPAC诱导NaPi-IIa从BBM中回收。我们的结果表明,EPAC激活可能代表了一种此前未被认识的参与cAMP对NHE3调节的机制,而NaPi-IIa的调节由PKA介导而非EPAC介导。

相似文献

1
Regulation of sodium-proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (EPAC).
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):803-8. doi: 10.1073/pnas.0503562103. Epub 2006 Jan 9.
3
Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells.
Am J Physiol Renal Physiol. 2009 Dec;297(6):F1647-55. doi: 10.1152/ajprenal.00082.2009. Epub 2009 Sep 23.
5
Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells.
Am J Physiol Renal Physiol. 2005 Apr;288(4):F740-7. doi: 10.1152/ajprenal.00380.2004. Epub 2004 Nov 16.
7
Cyclic AMP-dependent protein kinase and Epac mediate cyclic AMP responses in pancreatic acini.
Am J Physiol Gastrointest Liver Physiol. 2007 May;292(5):G1403-10. doi: 10.1152/ajpgi.00478.2005. Epub 2007 Jan 18.
9
Indirect regulation of the intestinal H+-coupled amino acid transporter hPAT1 (SLC36A1).
J Cell Physiol. 2005 Aug;204(2):604-13. doi: 10.1002/jcp.20337.
10
Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the beta 2-adrenergic receptor.
J Cell Biol. 2003 Feb 17;160(4):487-93. doi: 10.1083/jcb.200209105. Epub 2003 Feb 10.

引用本文的文献

1
Biochemical Modification and Subcellular Trafficking of Urea Transporters.
Subcell Biochem. 2025;118:63-85. doi: 10.1007/978-981-96-6898-4_4.
2
Tissue Distribution, Expression and Regulation of Urea Transporters.
Subcell Biochem. 2025;118:45-62. doi: 10.1007/978-981-96-6898-4_3.
4
Multifaceted roles of Epac signaling in renal functions.
Biochem J. 2025 May 14;482(10):553-68. doi: 10.1042/BCJ20253103.
5
A Review of Epithelial Ion Transporters and Their Roles in Equine Infectious Colitis.
Vet Sci. 2024 Oct 7;11(10):480. doi: 10.3390/vetsci11100480.
6
The Intricacies of Renal Phosphate Reabsorption-An Overview.
Int J Mol Sci. 2024 Apr 25;25(9):4684. doi: 10.3390/ijms25094684.
7
Epac induces ryanodine receptor-dependent intracellular and inter-organellar calcium mobilization in mpkCCD cells.
Front Physiol. 2023 Aug 29;14:1250273. doi: 10.3389/fphys.2023.1250273. eCollection 2023.
8
Inhibition of Transforming Growth Factor-β Improves Primary Renal Tubule Cell Differentiation in Long-Term Culture.
Tissue Eng Part A. 2023 Feb;29(3-4):102-111. doi: 10.1089/ten.TEA.2022.0147. Epub 2022 Nov 18.

本文引用的文献

1
Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells.
Am J Physiol Renal Physiol. 2005 Apr;288(4):F740-7. doi: 10.1152/ajprenal.00380.2004. Epub 2004 Nov 16.
2
Differential traffic of proximal tubule Na+ transporters during hypertension or PTH: NHE3 to base of microvilli vs. NaPi2 to endosomes.
Am J Physiol Renal Physiol. 2004 Nov;287(5):F896-906. doi: 10.1152/ajprenal.00160.2004. Epub 2004 Jul 20.
3
Non-kinase second-messenger signaling: new pathways with new promise.
Bioessays. 2004 Jul;26(7):730-8. doi: 10.1002/bies.20057.
4
Nongenomic stimulation of vacuolar H+-ATPases in intercalated renal tubule cells by aldosterone.
Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2636-41. doi: 10.1073/pnas.0307321101.
6
Epac: a new cAMP target and new avenues in cAMP research.
Nat Rev Mol Cell Biol. 2003 Sep;4(9):733-8. doi: 10.1038/nrm1197.
8
The sodium phosphate cotransporter family SLC34.
Pflugers Arch. 2004 Feb;447(5):763-7. doi: 10.1007/s00424-003-1072-5. Epub 2003 May 16.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验