Suppr超能文献

线粒体铁转运蛋白对红系细胞铁吸收至关重要。

Mitoferrin is essential for erythroid iron assimilation.

作者信息

Shaw George C, Cope John J, Li Liangtao, Corson Kenneth, Hersey Candace, Ackermann Gabriele E, Gwynn Babette, Lambert Amy J, Wingert Rebecca A, Traver David, Trede Nikolaus S, Barut Bruce A, Zhou Yi, Minet Emmanuel, Donovan Adriana, Brownlie Alison, Balzan Rena, Weiss Mitchell J, Peters Luanne L, Kaplan Jerry, Zon Leonard I, Paw Barry H

机构信息

Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Nature. 2006 Mar 2;440(7080):96-100. doi: 10.1038/nature04512.

Abstract

Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe-S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.

摘要

铁在许多代谢过程中发挥着重要作用,包括电子传递、脱氧核糖核苷酸合成、氧气运输以及许多涉及血红蛋白和铁硫簇蛋白的重要氧化还原反应。铁稳态失调会导致缺铁或铁过载。线粒体中铁运输的精确调节对于红细胞发育过程中的血红素生物合成、血红蛋白生成以及铁硫簇蛋白组装至关重要。在此,我们描述了一种斑马鱼突变体,名为弗拉斯卡蒂(frs),它由于线粒体铁摄取缺陷而表现出严重的低色素性贫血和红细胞成熟停滞。通过定位克隆,我们发现frs突变体中发生突变的基因是脊椎动物线粒体溶质载体家族(SLC25)的一个成员,我们将其称为线粒体铁转运蛋白(mfrn)。mfrn在斑马鱼和小鼠的胎儿及成年造血组织中高度表达。由Mfrn(也称为Slc25a37)缺失的小鼠胚胎干细胞产生的成红细胞表现出成熟停滞,55Fe掺入血红素的能力严重受损。酵母mfrn同源物MRS3和MRS4的破坏会导致铁代谢和线粒体铁硫簇生物合成缺陷。小鼠Mfrn可挽救frs斑马鱼的缺陷,斑马鱼mfrn可补充酵母突变体,这表明该基因的功能可能高度保守。我们的数据表明,mfrn作为脊椎动物成红细胞中血红素生物合成所必需的主要线粒体铁导入蛋白发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验