Pascual Maya, Vicente Marta, Monferrer Lidon, Artero Ruben
Department of Genetics, University of Valencia, Doctor Moliner, 50, 46100 Burjasot, Valencia, Spain.
Differentiation. 2006 Mar;74(2-3):65-80. doi: 10.1111/j.1432-0436.2006.00060.x.
Alternative splicing is widely used to generate protein diversity and to control gene expression in many biological processes, including cell fate determination and apoptosis. In this review, we focus on the Muscleblind family of tissue-specific alternative splicing regulators. Muscleblind proteins bind pre-mRNA through an evolutionarily conserved tandem CCCH zinc finger domain. Human Muscleblind homologs MBNL1, MBNL2 and MBNL3 promote inclusion or exclusion of specific exons on different pre-mRNAs by antagonizing the activity of CUG-BP and ETR-3-like factors (CELF proteins) bound to distinct intronic sites. The relative activities of Muscleblind and CELF proteins control a key developmental switch. Defined transcripts follow an embryonic splice pattern when CELF activity predominates, whereas they follow an adult pattern when Muscleblind activity prevails. Human MBNL proteins show functional specializations. While MBNL1 seems to promote muscle differentiation, MBNL3 appears to function in an opposing manner inhibiting expression of muscle differentiation markers. MBNL2, on the other hand, participates in a new RNA-dependent protein localization mechanism involving recruitment of integrin alpha3 protein to focal adhesions. Both muscleblind mutant Drosophila embryos and Mbnl1 knockout mice show muscle abnormalities and altered splicing of specific transcripts. In addition to regulating terminal muscle differentiation through alternative splicing control, results by several groups suggest that Muscleblind participates in the differentiation of photoreceptors, neurons, adipocytes and blood cell types. Misregulation of MBNL activity can lead to human pathologies. Through mechanisms not completely identified yet, expression of transcripts containing large non-coding CUG or CCUG repeat expansions mimics muscleblind loss-of-function phenotypes. Archetypical within this class of disorders are myotonic dystrophies. Our understanding of the biology of Muscleblind proteins has increased dramatically over the last few years, but several key issues remain unsolved. Defining the mechanism of the activity of Muscleblind proteins, their splicing partners, and the functional relevance of its several protein isoforms are just a few examples.
可变剪接在许多生物学过程中被广泛用于产生蛋白质多样性和控制基因表达,包括细胞命运决定和细胞凋亡。在本综述中,我们聚焦于组织特异性可变剪接调节因子的肌盲蛋白家族。肌盲蛋白通过一个进化上保守的串联CCCH锌指结构域与前体mRNA结合。人类肌盲同源蛋白MBNL1、MBNL2和MBNL3通过拮抗与不同内含子位点结合的CUG结合蛋白和ETR-3样因子(CELF蛋白)的活性,促进或排除不同前体mRNA上特定外显子的包含。肌盲蛋白和CELF蛋白的相对活性控制着一个关键的发育开关。当CELF活性占主导时,特定转录本遵循胚胎剪接模式,而当肌盲蛋白活性占优势时,它们遵循成人模式。人类MBNL蛋白表现出功能特化。虽然MBNL1似乎促进肌肉分化,但MBNL3似乎以相反的方式发挥作用,抑制肌肉分化标志物的表达。另一方面,MBNL2参与一种新的RNA依赖性蛋白质定位机制,该机制涉及将整合素α3蛋白募集到粘着斑。肌盲突变果蝇胚胎和Mbnl1基因敲除小鼠均表现出肌肉异常和特定转录本剪接改变。除了通过可变剪接控制调节终末肌肉分化外,多个研究小组的结果表明,肌盲蛋白参与光感受器、神经元、脂肪细胞和血细胞类型的分化。MBNL活性失调可导致人类疾病。通过尚未完全明确的机制,含有大量非编码CUG或CCUG重复扩增的转录本的表达模拟了肌盲蛋白功能丧失的表型。这类疾病中的典型代表是强直性肌营养不良症。在过去几年里,我们对肌盲蛋白生物学的理解有了显著提高,但仍有几个关键问题尚未解决。确定肌盲蛋白的活性机制、其剪接伙伴以及其几种蛋白质异构体的功能相关性只是其中的几个例子。