Suppr超能文献

急性呼吸衰竭时的食管压力和跨肺压

Esophageal and transpulmonary pressures in acute respiratory failure.

作者信息

Talmor Daniel, Sarge Todd, O'Donnell Carl R, Ritz Ray, Malhotra Atul, Lisbon Alan, Loring Stephen H

机构信息

Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.

出版信息

Crit Care Med. 2006 May;34(5):1389-94. doi: 10.1097/01.CCM.0000215515.49001.A2.

Abstract

OBJECTIVE

Pressure inflating the lung during mechanical ventilation is the difference between pressure applied at the airway opening (Pao) and pleural pressure (Ppl). Depending on the chest wall's contribution to respiratory mechanics, a given positive end-expiratory and/or end-inspiratory plateau pressure may be appropriate for one patient but inadequate or potentially injurious for another. Thus, failure to account for chest wall mechanics may affect results in clinical trials of mechanical ventilation strategies in acute respiratory distress syndrome. By measuring esophageal pressure (Pes), we sought to characterize influence of the chest wall on Ppl and transpulmonary pressure (PL) in patients with acute respiratory failure.

DESIGN

Prospective observational study.

SETTING

Medical and surgical intensive care units at Beth Israel Deaconess Medical Center.

PATIENTS

Seventy patients with acute respiratory failure.

INTERVENTIONS

Placement of esophageal balloon-catheters.

MEASUREMENTS AND MAIN RESULTS

Airway, esophageal, and gastric pressures recorded at end-exhalation and end-inflation Pes averaged 17.5 +/- 5.7 cm H2O at end-expiration and 21.2 +/- 7.7 cm H2O at end-inflation and were not significantly correlated with body mass index or chest wall elastance. Estimated PL was 1.5 +/- 6.3 cm H2O at end-expiration, 21.4 +/- 9.3 cm H2O at end-inflation, and 18.4 +/- 10.2 cm H2O (n = 40) during an end-inspiratory hold (plateau). Although PL at end-expiration was significantly correlated with positive end-expiratory pressure (p < .0001), only 24% of the variance in PL was explained by Pao (R = .243), and 52% was due to variation in Pes.

CONCLUSIONS

In patients in acute respiratory failure, elevated esophageal pressures suggest that chest wall mechanical properties often contribute substantially and unpredictably to total respiratory impedance, and therefore Pao may not adequately predict PL or lung distention. Systematic use of esophageal manometry has the potential to improve ventilator management in acute respiratory failure by providing more direct assessment of lung distending pressure.

摘要

目的

机械通气期间对肺进行压力充气是气道开口处施加的压力(Pao)与胸膜压力(Ppl)之间的差值。根据胸壁对呼吸力学的影响,给定的呼气末正压和/或吸气末平台压对一名患者可能是合适的,但对另一名患者可能不足或有潜在伤害。因此,未能考虑胸壁力学可能会影响急性呼吸窘迫综合征机械通气策略的临床试验结果。通过测量食管压力(Pes),我们试图描述胸壁对急性呼吸衰竭患者Ppl和跨肺压(PL)的影响。

设计

前瞻性观察性研究。

地点

贝斯以色列女执事医疗中心的内科和外科重症监护病房。

患者

70例急性呼吸衰竭患者。

干预措施

放置食管球囊导管。

测量和主要结果

呼气末和吸气末记录的气道、食管和胃内压力。呼气末Pes平均为17.5±5.7 cmH₂O,吸气末为21.2±7.7 cmH₂O,与体重指数或胸壁弹性无显著相关性。呼气末估计的PL为1.5±6.3 cmH₂O,吸气末为21.4±9.3 cmH₂O,吸气末屏气(平台期)时为18.4±10.2 cmH₂O(n = 40)。虽然呼气末PL与呼气末正压显著相关(p <.0001),但PL中只有24%的变异可由Pao解释(R =.243),52%是由于Pes的变化。

结论

在急性呼吸衰竭患者中,食管压力升高表明胸壁机械特性通常对总呼吸阻抗有很大且不可预测的影响,因此Pao可能无法充分预测PL或肺扩张情况。系统使用食管测压法有可能通过更直接地评估肺扩张压力来改善急性呼吸衰竭患者的呼吸机管理。

相似文献

1
Esophageal and transpulmonary pressures in acute respiratory failure.
Crit Care Med. 2006 May;34(5):1389-94. doi: 10.1097/01.CCM.0000215515.49001.A2.
2
Esophageal Manometry and Regional Transpulmonary Pressure in Lung Injury.
Am J Respir Crit Care Med. 2018 Apr 15;197(8):1018-1026. doi: 10.1164/rccm.201709-1806OC.
5
Pleural and transpulmonary pressures to tailor protective ventilation in children.
Thorax. 2023 Jan;78(1):97-105. doi: 10.1136/thorax-2021-218538. Epub 2022 Jul 8.
7
9
Reverse Trigger Phenotypes in Acute Respiratory Distress Syndrome.
Am J Respir Crit Care Med. 2021 Jan 1;203(1):67-77. doi: 10.1164/rccm.201907-1427OC.
10
Mortality and pulmonary mechanics in relation to respiratory system and transpulmonary driving pressures in ARDS.
Intensive Care Med. 2016 Aug;42(8):1206-13. doi: 10.1007/s00134-016-4403-7. Epub 2016 Jun 18.

引用本文的文献

2
Heart-lung crosstalk in acute respiratory distress syndrome.
Front Physiol. 2024 Oct 18;15:1478514. doi: 10.3389/fphys.2024.1478514. eCollection 2024.
3
Transpulmonary pressure monitoring in critically ill patients: pros and cons.
Crit Care. 2024 May 25;28(1):177. doi: 10.1186/s13054-024-04950-y.
4
Advanced Respiratory Monitoring during Extracorporeal Membrane Oxygenation.
J Clin Med. 2024 Apr 26;13(9):2541. doi: 10.3390/jcm13092541.
6
Fundamental concepts and the latest evidence for esophageal pressure monitoring.
J Intensive Care. 2023 May 22;11(1):22. doi: 10.1186/s40560-023-00671-6.
7
The oesophageal balloon for respiratory monitoring in ventilated patients: updated clinical review and practical aspects.
Eur Respir Rev. 2023 May 17;32(168). doi: 10.1183/16000617.0186-2022. Print 2023 Jun 30.
8
Expiratory Muscles of Respiration and Weaning Failure: What do We Know So Far?
Indian J Crit Care Med. 2023 Jan;27(1):1-3. doi: 10.5005/jp-journals-10071-24381.
9
Ventilation Induces Changes in Pulse Wave Transit Time in the Pulmonary Artery.
Biomedicines. 2023 Jan 11;11(1):182. doi: 10.3390/biomedicines11010182.

本文引用的文献

1
Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects.
J Appl Physiol (1985). 2006 Mar;100(3):753-8. doi: 10.1152/japplphysiol.00697.2005. Epub 2005 Nov 23.
4
Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study.
Intensive Care Med. 2004 May;30(5):822-9. doi: 10.1007/s00134-004-2169-9. Epub 2004 Feb 3.
5
Effects of cyclic opening and closing at low- and high-volume ventilation on bronchoalveolar lavage cytokines.
Crit Care Med. 2004 Jan;32(1):168-74. doi: 10.1097/01.CCM.0000104203.20830.AE.
6
Imbalances in regional lung ventilation: a validation study on electrical impedance tomography.
Am J Respir Crit Care Med. 2004 Apr 1;169(7):791-800. doi: 10.1164/rccm.200301-133OC. Epub 2003 Dec 23.
7
IMPROVED TECHNIQUE FOR ESTIMATING PLEURAL PRESSURE FROM ESOPHAGEAL BALLOONS.
J Appl Physiol. 1964 Mar;19:207-11. doi: 10.1152/jappl.1964.19.2.207.
8
How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients.
Eur Respir J Suppl. 2003 Aug;42:15s-21s. doi: 10.1183/09031936.03.00420303.
9
Novel aspects of pulmonary mechanics in intensive care.
Br J Anaesth. 2003 Jul;91(1):81-91. doi: 10.1093/bja/aeg146.
10
Ventilator-induced lung injury: in vivo and in vitro mechanisms.
Am J Physiol Lung Cell Mol Physiol. 2002 Oct;283(4):L678-82. doi: 10.1152/ajplung.00154.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验