Kämper Andreas, Apostolakis Joannis, Rarey Matthias, Marian Christel M, Lengauer Thomas
Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, Germany.
J Chem Inf Model. 2006 Mar-Apr;46(2):903-11. doi: 10.1021/ci050467z.
The prediction of the structure of host-guest complexes is one of the most challenging problems in supramolecular chemistry. Usual procedures for docking of ligands into receptors do not take full conformational freedom of the host molecule into account. We describe and apply a new docking approach which performs a conformational sampling of the host and then sequentially docks the ligand into all receptor conformers using the incremental construction technique of the FlexX software platform. The applicability of this approach is validated on a set of host-guest complexes with known crystal structure. Moreover, we demonstrate that due to the interchangeability of the roles of host and guest, the docking process can be inverted. In this inverse docking mode, the receptor molecule is docked around its ligand. For all investigated test cases, the predicted structures are in good agreement with the experiment for both normal (forward) and inverse docking. Since the ligand is often smaller than the receptor and, thus, its conformational space is more restricted, the inverse docking approach leads in most cases to considerable speed-up. By having the choice between two alternative docking directions, the application range of the method is significantly extended. Finally, an important result of this study is the suitability of the simple energy function used here for structure prediction of complexes in organic media.
主客体复合物结构的预测是超分子化学中最具挑战性的问题之一。将配体对接至受体的常规方法并未充分考虑主体分子的完全构象自由度。我们描述并应用了一种新的对接方法,该方法对主体进行构象采样,然后使用FlexX软件平台的增量构建技术将配体依次对接至所有受体构象。该方法的适用性在一组具有已知晶体结构的主客体复合物上得到了验证。此外,我们证明由于主体和客体角色的互换性,对接过程可以反转。在这种反向对接模式下,受体分子围绕其配体进行对接。对于所有研究的测试案例,预测结构在正常(正向)和反向对接方面均与实验结果高度吻合。由于配体通常比受体小,因此其构象空间受到更多限制,反向对接方法在大多数情况下可显著加快速度。通过在两种替代对接方向之间进行选择,该方法的应用范围得到了显著扩展。最后,本研究的一个重要结果是此处使用的简单能量函数适用于有机介质中复合物的结构预测。