Suppr超能文献

磷信号转导扰动对枯草芽孢杆菌生物膜的结构、芽孢形成和芽孢抗性的影响

Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis.

作者信息

Veening Jan-Willem, Kuipers Oscar P, Brul Stanley, Hellingwerf Klaas J, Kort Remco

机构信息

Moleculart Genetics Group, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands.

出版信息

J Bacteriol. 2006 Apr;188(8):3099-109. doi: 10.1128/JB.188.8.3099-3109.2006.

Abstract

The spore-forming bacterium Bacillus subtilis is able to form highly organized multicellular communities called biofilms. This coordinated bacterial behavior is often lost in domesticated or laboratory strains as a result of planktonic growth in rich media for many generations. However, we show here that the laboratory strain B. subtilis 168 is still capable of forming spatially organized multicellular communities on minimal medium agar plates, exemplified by colonies with vein-like structures formed by elevated bundles of cells. In line with the current model for biofilm formation, we demonstrate that overproduction of the phosphorelay components KinA and Spo0A stimulates bundle formation, while overproduction of the transition state regulators AbrB and SinR leads to repression of formation of elevated bundles. Time-lapse fluorescence microscopy studies of B. subtilis green fluorescent protein reporter strains show that bundles are preferential sites for spore formation and that flat structures surrounding the bundles contain vegetative cells. The elevated bundle structures are formed prior to sporulation, in agreement with a genetic developmental program in which these processes are sequentially activated. Perturbations of the phosphorelay by disruption and overexpression of genes that lead to an increased tendency to sporulate result in the segregation of sporulation mutations and decreased heat resistance of spores in biofilms. These results stress the importance of a balanced control of the phosphorelay for biofilm and spore development.

摘要

形成芽孢的细菌枯草芽孢杆菌能够形成高度有组织的多细胞群落,即生物膜。由于在丰富培养基中进行多代浮游生长,这种协调的细菌行为在驯化菌株或实验室菌株中常常丧失。然而,我们在此表明,实验室菌株枯草芽孢杆菌168仍能够在基本培养基琼脂平板上形成空间上有组织的多细胞群落,以由细胞束升高形成的具有静脉状结构的菌落为例。与当前的生物膜形成模型一致,我们证明磷酸化信号转导组分KinA和Spo0A的过量表达刺激束状结构的形成,而过渡态调节因子AbrB和SinR的过量表达导致升高的束状结构形成的抑制。枯草芽孢杆菌绿色荧光蛋白报告菌株的延时荧光显微镜研究表明,束状结构是芽孢形成的优先位点,并且束状结构周围的扁平结构含有营养细胞。升高的束状结构在芽孢形成之前形成,这与这些过程被顺序激活的遗传发育程序一致。通过破坏和过表达导致芽孢形成倾向增加的基因对磷酸化信号转导进行扰动,导致芽孢形成突变的分离以及生物膜中芽孢耐热性的降低。这些结果强调了对生物膜和芽孢发育的磷酸化信号转导进行平衡控制的重要性。

相似文献

2
The phosphorelay signal transduction pathway in the initiation of Bacillus subtilis sporulation.
J Cell Biochem. 1993 Jan;51(1):55-61. doi: 10.1002/jcb.240510111.
3
AbrB and Spo0E control the proper timing of sporulation in Bacillus subtilis.
Curr Microbiol. 2004 Apr;48(4):262-9. doi: 10.1007/s00284-003-4186-2.
6
Hpr (ScoC) and the phosphorelay couple cell cycle and sporulation in Bacillus subtilis.
FEMS Microbiol Lett. 2004 Feb 9;231(1):99-110. doi: 10.1016/S0378-1097(03)00936-4.
7
Targets of the master regulator of biofilm formation in Bacillus subtilis.
Mol Microbiol. 2006 Feb;59(4):1216-28. doi: 10.1111/j.1365-2958.2005.05019.x.
8
A master regulator for biofilm formation by Bacillus subtilis.
Mol Microbiol. 2005 Feb;55(3):739-49. doi: 10.1111/j.1365-2958.2004.04440.x.

引用本文的文献

1
Harnessing emergent properties of microbial consortia for Agriculture: Assembly of the Xilonen SynCom.
Biofilm. 2025 May 3;9:100284. doi: 10.1016/j.bioflm.2025.100284. eCollection 2025 Jun.
3
Pectic homogalacturonan sensed by acts as host associated cue to promote establishment and persistence in the rhizosphere.
iScience. 2023 Sep 15;26(10):107925. doi: 10.1016/j.isci.2023.107925. eCollection 2023 Oct 20.
4
Insights into the Roles of Lipoteichoic Acids and MprF in Bacillus subtilis.
mBio. 2023 Feb 28;14(1):e0266722. doi: 10.1128/mbio.02667-22. Epub 2023 Feb 6.
5
The roles of intracellular and extracellular calcium in biofilms.
iScience. 2022 Apr 27;25(6):104308. doi: 10.1016/j.isci.2022.104308. eCollection 2022 Jun 17.
6
sensu lato biofilm formation and its ecological importance.
Biofilm. 2022 Feb 15;4:100070. doi: 10.1016/j.bioflm.2022.100070. eCollection 2022 Dec.
7
The environment topography alters the way to multicellularity in .
Sci Adv. 2021 Aug 25;7(35). doi: 10.1126/sciadv.abh2278. Print 2021 Aug.
8
Stress-Induced, Highly Efficient, Donor Cell-Dependent Cell-to-Cell Natural Transformation in Bacillus subtilis.
J Bacteriol. 2018 Aug 10;200(17). doi: 10.1128/JB.00267-18. Print 2018 Sep 1.
9
Effects of growth rate and promoter activity on single-cell protein expression.
Sci Rep. 2017 Jul 24;7(1):6299. doi: 10.1038/s41598-017-05871-3.
10
Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis.
PLoS Genet. 2017 Jul 19;13(7):e1006909. doi: 10.1371/journal.pgen.1006909. eCollection 2017 Jul.

本文引用的文献

1
Cell population heterogeneity during growth of Bacillus subtilis.
Genes Dev. 2005 Dec 15;19(24):3083-94. doi: 10.1101/gad.1373905.
4
Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis.
Mol Microbiol. 2005 Jun;56(6):1481-94. doi: 10.1111/j.1365-2958.2005.04659.x.
5
Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development.
Mol Microbiol. 2005 May;56(3):604-14. doi: 10.1111/j.1365-2958.2005.04488.x.
7
High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis.
J Bacteriol. 2005 Feb;187(4):1357-68. doi: 10.1128/JB.187.4.1357-1368.2005.
8
A master regulator for biofilm formation by Bacillus subtilis.
Mol Microbiol. 2005 Feb;55(3):739-49. doi: 10.1111/j.1365-2958.2004.04440.x.
9
Biofilms: the matrix revisited.
Trends Microbiol. 2005 Jan;13(1):20-6. doi: 10.1016/j.tim.2004.11.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验