Kang Guoxin, Chepurny Oleg G, Malester Brian, Rindler Michael J, Rehmann Holger, Bos Johannes L, Schwede Frank, Coetzee William A, Holz George G
Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY, USA.
J Physiol. 2006 Jun 15;573(Pt 3):595-609. doi: 10.1113/jphysiol.2006.107391. Epub 2006 Apr 13.
The Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs, also known as Epac1 and Epac2) mediate stimulatory actions of the second messenger cAMP on insulin secretion from pancreatic beta cells. Because Epac2 is reported to interact in vitro with the isolated nucleotide-binding fold-1 (NBF-1) of the beta-cell sulphonylurea receptor-1 (SUR1), we hypothesized that cAMP might act via Epac1 and/or Epac2 to inhibit beta-cell ATP-sensitive K+ channels (K(ATP) channels; a hetero-octomer of SUR1 and Kir6.2). If so, Epac-mediated inhibition of K(ATP) channels might explain prior reports that cAMP-elevating agents promote beta-cell depolarization, Ca2+ influx and insulin secretion. Here we report that Epac-selective cAMP analogues (2'-O-Me-cAMP; 8-pCPT-2'-O-Me-cAMP; 8-pMeOPT-2'-O-Me-cAMP), but not a cGMP analogue (2'-O-Me-cGMP), inhibit the function of K(ATP) channels in human beta cells and rat INS-1 insulin-secreting cells. Inhibition of K(ATP) channels is also observed when cAMP, itself, is administered intracellularly, whereas no such effect is observed upon administration N6-Bnz-cAMP, a cAMP analogue that activates protein kinase A (PKA) but not Epac. The inhibitory actions of Epac-selective cAMP analogues at K(ATP) channels are mimicked by a cAMP agonist (8-Bromoadenosine-3', 5'-cyclic monophosphorothioate, Sp-isomer, Sp-8-Br-cAMPS), but not a cAMP antagonist (8-Bromoadenosine-3', 5'-cyclic monophosphorothioate, Rp-isomer, Rp-8-Br-cAMPS), and are abrogated following transfection of INS-1 cells with a dominant-negative Epac1 that fails to bind cAMP. Because both Epac1 and Epac2 coimmunoprecipitate with full-length SUR1 in HEK cell lysates, such findings delineate a novel mechanism of second messenger signal transduction in which cAMP acts via Epac to modulate ion channel function, an effect measurable as the inhibition of K(ATP) channel activity in pancreatic beta cells.
环磷酸腺苷(cAMP)调节的鸟嘌呤核苷酸交换因子(cAMPGEFs,也称为Epac1和Epac2)家族介导第二信使cAMP对胰腺β细胞胰岛素分泌的刺激作用。由于据报道Epac2在体外与β细胞磺脲类受体-1(SUR1)的分离核苷酸结合折叠-1(NBF-1)相互作用,我们推测cAMP可能通过Epac1和/或Epac2发挥作用,以抑制β细胞ATP敏感性钾通道(K(ATP)通道;SUR1和Kir6.2的异源八聚体)。如果是这样,Epac介导的K(ATP)通道抑制作用可能解释了先前的报道,即cAMP升高剂促进β细胞去极化、Ca2+内流和胰岛素分泌。在此我们报道,Epac选择性cAMP类似物(2'-O-甲基-cAMP;8-pCPT-2'-O-甲基-cAMP;8-pMeOPT-2'-O-甲基-cAMP),而非cGMP类似物(2'-O-甲基-cGMP),抑制人β细胞和大鼠INS-1胰岛素分泌细胞中K(ATP)通道的功能。当cAMP本身在细胞内给药时,也观察到K(ATP)通道的抑制作用,而在给予N6-苯甲酰基-cAMP(一种激活蛋白激酶A(PKA)但不激活Epac的cAMP类似物)时未观察到这种效应。Epac选择性cAMP类似物对K(ATP)通道的抑制作用被cAMP激动剂(8-溴腺苷-3',5'-环一磷酸硫代酯,Sp-异构体,Sp-8-Br-cAMPS)模拟,但未被cAMP拮抗剂(8-溴腺苷-3',5'-环一磷酸硫代酯,Rp-异构体,Rp-8-Br-cAMPS)模拟,并且在用无法结合cAMP的显性负性Epac1转染INS-1细胞后被消除。由于Epac1和Epac2在HEK细胞裂解物中均与全长SUR1共免疫沉淀,这些发现描绘了一种新的第二信使信号转导机制,其中cAMP通过Epac发挥作用以调节离子通道功能,这种效应可通过抑制胰腺β细胞中的K(ATP)通道活性来衡量。