Suppr超能文献

环磷酸腺苷(cAMP)传感器Epac作为人胰岛β细胞和大鼠INS-1细胞中三磷酸腺苷(ATP)敏感性钾通道活性的一个决定因素。

cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells.

作者信息

Kang Guoxin, Chepurny Oleg G, Malester Brian, Rindler Michael J, Rehmann Holger, Bos Johannes L, Schwede Frank, Coetzee William A, Holz George G

机构信息

Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY, USA.

出版信息

J Physiol. 2006 Jun 15;573(Pt 3):595-609. doi: 10.1113/jphysiol.2006.107391. Epub 2006 Apr 13.

Abstract

The Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs, also known as Epac1 and Epac2) mediate stimulatory actions of the second messenger cAMP on insulin secretion from pancreatic beta cells. Because Epac2 is reported to interact in vitro with the isolated nucleotide-binding fold-1 (NBF-1) of the beta-cell sulphonylurea receptor-1 (SUR1), we hypothesized that cAMP might act via Epac1 and/or Epac2 to inhibit beta-cell ATP-sensitive K+ channels (K(ATP) channels; a hetero-octomer of SUR1 and Kir6.2). If so, Epac-mediated inhibition of K(ATP) channels might explain prior reports that cAMP-elevating agents promote beta-cell depolarization, Ca2+ influx and insulin secretion. Here we report that Epac-selective cAMP analogues (2'-O-Me-cAMP; 8-pCPT-2'-O-Me-cAMP; 8-pMeOPT-2'-O-Me-cAMP), but not a cGMP analogue (2'-O-Me-cGMP), inhibit the function of K(ATP) channels in human beta cells and rat INS-1 insulin-secreting cells. Inhibition of K(ATP) channels is also observed when cAMP, itself, is administered intracellularly, whereas no such effect is observed upon administration N6-Bnz-cAMP, a cAMP analogue that activates protein kinase A (PKA) but not Epac. The inhibitory actions of Epac-selective cAMP analogues at K(ATP) channels are mimicked by a cAMP agonist (8-Bromoadenosine-3', 5'-cyclic monophosphorothioate, Sp-isomer, Sp-8-Br-cAMPS), but not a cAMP antagonist (8-Bromoadenosine-3', 5'-cyclic monophosphorothioate, Rp-isomer, Rp-8-Br-cAMPS), and are abrogated following transfection of INS-1 cells with a dominant-negative Epac1 that fails to bind cAMP. Because both Epac1 and Epac2 coimmunoprecipitate with full-length SUR1 in HEK cell lysates, such findings delineate a novel mechanism of second messenger signal transduction in which cAMP acts via Epac to modulate ion channel function, an effect measurable as the inhibition of K(ATP) channel activity in pancreatic beta cells.

摘要

环磷酸腺苷(cAMP)调节的鸟嘌呤核苷酸交换因子(cAMPGEFs,也称为Epac1和Epac2)家族介导第二信使cAMP对胰腺β细胞胰岛素分泌的刺激作用。由于据报道Epac2在体外与β细胞磺脲类受体-1(SUR1)的分离核苷酸结合折叠-1(NBF-1)相互作用,我们推测cAMP可能通过Epac1和/或Epac2发挥作用,以抑制β细胞ATP敏感性钾通道(K(ATP)通道;SUR1和Kir6.2的异源八聚体)。如果是这样,Epac介导的K(ATP)通道抑制作用可能解释了先前的报道,即cAMP升高剂促进β细胞去极化、Ca2+内流和胰岛素分泌。在此我们报道,Epac选择性cAMP类似物(2'-O-甲基-cAMP;8-pCPT-2'-O-甲基-cAMP;8-pMeOPT-2'-O-甲基-cAMP),而非cGMP类似物(2'-O-甲基-cGMP),抑制人β细胞和大鼠INS-1胰岛素分泌细胞中K(ATP)通道的功能。当cAMP本身在细胞内给药时,也观察到K(ATP)通道的抑制作用,而在给予N6-苯甲酰基-cAMP(一种激活蛋白激酶A(PKA)但不激活Epac的cAMP类似物)时未观察到这种效应。Epac选择性cAMP类似物对K(ATP)通道的抑制作用被cAMP激动剂(8-溴腺苷-3',5'-环一磷酸硫代酯,Sp-异构体,Sp-8-Br-cAMPS)模拟,但未被cAMP拮抗剂(8-溴腺苷-3',5'-环一磷酸硫代酯,Rp-异构体,Rp-8-Br-cAMPS)模拟,并且在用无法结合cAMP的显性负性Epac1转染INS-1细胞后被消除。由于Epac1和Epac2在HEK细胞裂解物中均与全长SUR1共免疫沉淀,这些发现描绘了一种新的第二信使信号转导机制,其中cAMP通过Epac发挥作用以调节离子通道功能,这种效应可通过抑制胰腺β细胞中的K(ATP)通道活性来衡量。

相似文献

1
cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells.
J Physiol. 2006 Jun 15;573(Pt 3):595-609. doi: 10.1113/jphysiol.2006.107391. Epub 2006 Apr 13.
2
Role of the cAMP sensor Epac as a determinant of KATP channel ATP sensitivity in human pancreatic beta-cells and rat INS-1 cells.
J Physiol. 2008 Mar 1;586(5):1307-19. doi: 10.1113/jphysiol.2007.143818. Epub 2008 Jan 17.
3
Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.
Biochem Biophys Res Commun. 2013 Aug 9;437(4):603-8. doi: 10.1016/j.bbrc.2013.07.007. Epub 2013 Jul 12.
6
Rp-cAMPS Prodrugs Reveal the cAMP Dependence of First-Phase Glucose-Stimulated Insulin Secretion.
Mol Endocrinol. 2015 Jul;29(7):988-1005. doi: 10.1210/me.2014-1330. Epub 2015 Jun 10.
8
Treating diabetes today: a matter of selectivity of sulphonylureas.
Diabetes Obes Metab. 2012 Jan;14 Suppl 1:9-13. doi: 10.1111/j.1463-1326.2011.01507.x.
10
H3 domain of syntaxin 1A inhibits KATP channels by its actions on the sulfonylurea receptor 1 nucleotide-binding folds-1 and -2.
J Biol Chem. 2004 Dec 17;279(51):53259-65. doi: 10.1074/jbc.M410171200. Epub 2004 Oct 13.

引用本文的文献

1
4
Unlocking the multifaceted roles of GLP-1: Physiological functions and therapeutic potential.
Toxicol Rep. 2025 Jan 16;14:101895. doi: 10.1016/j.toxrep.2025.101895. eCollection 2025 Jun.
5
Metabolic and Molecular Amplification of Insulin Secretion.
Adv Anat Embryol Cell Biol. 2024;239:117-139. doi: 10.1007/978-3-031-62232-8_5.
6
Live Cell Monitoring of Phosphodiesterase Inhibition by Sulfonylurea Drugs.
Biomolecules. 2024 Aug 10;14(8):985. doi: 10.3390/biom14080985.
8
The effect of forskolin and the role of Epac2A during activation, activity, and deactivation of beta cell networks.
Front Endocrinol (Lausanne). 2023 Aug 28;14:1225486. doi: 10.3389/fendo.2023.1225486. eCollection 2023.
9
Fluorescence imaging of beta cell primary cilia.
Front Endocrinol (Lausanne). 2022 Sep 23;13:1004136. doi: 10.3389/fendo.2022.1004136. eCollection 2022.
10
The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling.
Cells. 2021 Jul 1;10(7):1658. doi: 10.3390/cells10071658.

本文引用的文献

1
Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway.
J Biol Chem. 2006 Mar 31;281(13):8656-66. doi: 10.1074/jbc.M508854200. Epub 2006 Jan 10.
2
Phospholipase C epsilon modulates beta-adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy.
Circ Res. 2005 Dec 9;97(12):1305-13. doi: 10.1161/01.RES.0000196578.15385.bb. Epub 2005 Nov 17.
3
cAMP-binding protein Epac induces cardiomyocyte hypertrophy.
Circ Res. 2005 Dec 9;97(12):1296-304. doi: 10.1161/01.RES.0000194325.31359.86. Epub 2005 Nov 3.
4
Epac activation converts cAMP from a proliferative into a differentiation signal in PC12 cells.
Mol Biol Cell. 2005 Dec;16(12):5639-48. doi: 10.1091/mbc.e05-05-0432. Epub 2005 Oct 5.
5
PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis.
Physiol Rev. 2005 Oct;85(4):1303-42. doi: 10.1152/physrev.00001.2005.
6
7
ATP-sensitive potassium channelopathies: focus on insulin secretion.
J Clin Invest. 2005 Aug;115(8):2047-58. doi: 10.1172/JCI25495.
8
Cyclic AMP/cAMP-GEF pathway amplifies insulin exocytosis induced by Ca2+ and ATP in rat islet beta-cells.
Diabetes Metab Res Rev. 2006 Jan-Feb;22(1):64-71. doi: 10.1002/dmrr.580.
9
Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line.
J Biol Chem. 2005 Sep 2;280(35):31294-302. doi: 10.1074/jbc.M505657200. Epub 2005 Jun 29.
10
A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells.
J Physiol. 2005 Jul 1;566(Pt 1):173-88. doi: 10.1113/jphysiol.2005.087510. Epub 2005 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验