Suppr超能文献

由甲硫氨酸产生乙烯。

Ethylene production from methionine.

作者信息

Lieberman M, Kunishi A T

机构信息

Pioneering Research Laboratory for Postharvest Physiology, Market Quality Research Division, Agricultural Research Service, Beltsville, Md. 20705, U.S.A.

出版信息

Biochem J. 1965 Nov;97(2):449-59. doi: 10.1042/bj0970449.

Abstract
  1. A new reaction is described in which ethylene is formed from the Cu(+)-catalysed breakdown of methionine in phosphate buffer at 30 degrees in air. Some of the other products of the reaction are methionine sulphone, methionine sulphoxide, homocysteic acid, homocystine, acrolein, dimethyl disulphide, methanethiol, ethyl methyl sulphide, methane and ethane. These are considered to be produced in different reaction pathways. 2. Hydrogen peroxide is an intermediate in this reaction and can support ethylene production in the model system in anaerobic atmospheres. Cuprous copper is the active form that catalyses the formation of ethylene from an oxidized intermediate. The initial reaction is probably a Strecker degradation, but the aldehyde product is further degraded to ethylene and other products. 3. Methional (CH(3).S.CH(2).CH(2).CHO) is the most effective producer of ethylene in the model system and appears to be an intermediate in the reaction. 4. The evidence, from both tracer studies and from other precursors of ethylene in the reaction, indicates that ethylene is derived from the -CH(2).CH(2)- group of methionine.
摘要
  1. 描述了一种新反应,在该反应中,甲硫氨酸在30摄氏度的空气中于磷酸盐缓冲液中经铜(+)催化分解生成乙烯。该反应的其他一些产物包括甲硫氨酸砜、甲硫氨酸亚砜、高胱氨酸、高半胱氨酸、丙烯醛、二甲基二硫化物、甲硫醇、乙甲基硫醚、甲烷和乙烷。这些产物被认为是通过不同的反应途径生成的。2. 过氧化氢是该反应的中间体,在厌氧环境的模型系统中可促进乙烯的生成。亚铜是催化由氧化中间体形成乙烯的活性形式。初始反应可能是斯特雷克降解反应,但醛产物会进一步降解为乙烯和其他产物。3. 甲硫醛(CH(3).S.CH(2).CH(2).CHO)是模型系统中最有效的乙烯生成剂,似乎是该反应的中间体。4. 示踪研究及该反应中乙烯其他前体的证据均表明,乙烯源自甲硫氨酸的-CH(2).CH(2)-基团。

相似文献

1
Ethylene production from methionine.
Biochem J. 1965 Nov;97(2):449-59. doi: 10.1042/bj0970449.
4
A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis.
Science. 2020 Aug 28;369(6507):1094-1098. doi: 10.1126/science.abb6310.
8
Ethylene formation by cell-free extracts of Escherichia coli.
Arch Microbiol. 1986 Nov;146(2):151-8. doi: 10.1007/BF00402343.
9
A mechanistic change results in 100 times faster CH functionalization for ethane versus methane by a homogeneous Pt catalyst.
J Am Chem Soc. 2014 Jul 16;136(28):10085-94. doi: 10.1021/ja504368r. Epub 2014 Jun 30.
10
Deactivation pathways of neutral Ni(II) polymerization catalysts.
J Am Chem Soc. 2009 Feb 4;131(4):1565-74. doi: 10.1021/ja808855v.

引用本文的文献

1
Allies or Enemies? The Power of Plant Hormones in Animals: Insights into Their Regulatory Roles.
Molecules. 2025 Jul 16;30(14):2984. doi: 10.3390/molecules30142984.
2
Transcriptome profiling reveals ethylene formation in rice seeds by trichloroisocyanuric acid.
Plant Cell Rep. 2023 Nov;42(11):1721-1732. doi: 10.1007/s00299-023-03058-x. Epub 2023 Aug 18.
3
Small Molecules with Thiourea Skeleton Induce Ethylene Response in .
Int J Mol Sci. 2023 Aug 4;24(15):12420. doi: 10.3390/ijms241512420.
5
The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment.
Arch Toxicol. 2022 May;96(5):1297-1352. doi: 10.1007/s00204-022-03242-0. Epub 2022 Mar 6.
6
3-Phenyllactic acid, a root-promoting substance isolated from Bokashi fertilizer, exhibits synergistic effects with tryptophan.
Plant Biotechnol (Tokyo). 2021 Mar 25;38(1):9-16. doi: 10.5511/plantbiotechnology.20.0727a.
7
Demethylation of methionine and keratin damage in human hair.
Amino Acids. 2018 May;50(5):537-546. doi: 10.1007/s00726-018-2545-3. Epub 2018 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验