Suppr超能文献

比较用于从叙述文本中提取医学问题的自然语言处理工具。

Comparing natural language processing tools to extract medical problems from narrative text.

作者信息

Meystre Stéphane M, Haug Peter J

机构信息

Department of Medical Informatics, University of Utah, Salt Lake City, USA.

出版信息

AMIA Annu Symp Proc. 2005;2005:525-9.

Abstract

To help maintain a complete, accurate and timely Problem List, we are developing a system to automatically retrieve medical problems from free-text documents. This system uses Natural Language Processing to analyze all electronic narrative text documents in a patient's record. Here we evaluate and compare 3 different applications of NLP technology in our system: the first using MMTx (MetaMap Transfer) with a negation detection algorithm (NegEx), the second using an alpha version of a locally developed NLP application called MPLUS2, and the third using keyword searching. They were adapted and trained to extract medical problems from a set of 80 problems of diagnosis type. The version using MMTx and NegEx was improved by adding some disambiguation and modifying the negation detection algorithm, and these modifications significantly improved recall and precision. The different versions of the NLP module were compared, and showed the following recall / precision results: standard MMTx with NegEx version 0.775 / 0.398; improved MMTx with NegEx version 0.892 / 0.753; MPLUS2 version 0.693 / 0.402; and keyword searching version 0.575 / 0.807. Average results for the reviewers were a recall of 0.788 and a precision of 0.912.

摘要

为了帮助维护一个完整、准确且及时的问题列表,我们正在开发一个系统,用于从自由文本文件中自动检索医疗问题。该系统使用自然语言处理技术来分析患者记录中的所有电子叙述文本文件。在此,我们评估并比较了自然语言处理技术在我们系统中的3种不同应用:第一种使用带有否定检测算法(NegEx)的MMTx(MetaMap Transfer),第二种使用名为MPLUS2的本地开发的自然语言处理应用程序的alpha版本,第三种使用关键词搜索。它们经过调整和训练,以从一组80个诊断类型的问题中提取医疗问题。使用MMTx和NegEx的版本通过添加一些消歧和修改否定检测算法得到了改进,这些修改显著提高了召回率和精确率。对自然语言处理模块的不同版本进行了比较,结果显示了以下召回率/精确率:标准MMTx与NegEx版本为0.775 / 0.398;改进后的MMTx与NegEx版本为0.892 / 0.753;MPLUS2版本为0.693 / 0.402;关键词搜索版本为0.575 / 0.807。评审人员的平均结果是召回率为0.788,精确率为0.912。

相似文献

2
Natural language processing to extract medical problems from electronic clinical documents: performance evaluation.
J Biomed Inform. 2006 Dec;39(6):589-99. doi: 10.1016/j.jbi.2005.11.004. Epub 2005 Dec 5.
6
Automation of a problem list using natural language processing.
BMC Med Inform Decis Mak. 2005 Aug 31;5:30. doi: 10.1186/1472-6947-5-30.
9
Using NLP to extract concepts from chief complaints.
AMIA Annu Symp Proc. 2005;2005:1029.

引用本文的文献

2
Natural Language Processing for EHR-Based Computational Phenotyping.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):139-153. doi: 10.1109/TCBB.2018.2849968. Epub 2018 Jun 25.
3
Text Mining and Automation for Processing of Patient Referrals.
Appl Clin Inform. 2018 Jan;9(1):232-237. doi: 10.1055/s-0038-1639482. Epub 2018 Mar 28.
10
Anatomical entity recognition with a hierarchical framework augmented by external resources.
PLoS One. 2014 Oct 24;9(10):e108396. doi: 10.1371/journal.pone.0108396. eCollection 2014.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验