Suppr超能文献

细菌神经氨酸酶通过参与生物膜形成促进黏膜感染。

Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production.

作者信息

Soong Grace, Muir Amanda, Gomez Marisa I, Waks Jonathan, Reddy Bharat, Planet Paul, Singh Pradeep K, Kaneko Yukihiro, Wolfgang Matthew C, Hsiao Yu-Shan, Tong Liang, Prince Alice

机构信息

Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

出版信息

J Clin Invest. 2006 Aug;116(8):2297-2305. doi: 10.1172/JCI27920.

Abstract

Many respiratory pathogens, including Hemophilus influenzae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, express neuraminidases that can cleave alpha2,3-linked sialic acids from glycoconjugates. As mucosal surfaces are heavily sialylated, neuraminidases have been thought to modify epithelial cells by exposing potential bacterial receptors. However, in contrast to neuraminidase produced by the influenza virus, a role for bacterial neuraminidase in pathogenesis has not yet been clearly established. We constructed a mutant of P. aeruginosa PAO1 by deleting the PA2794 neuraminidase locus (Delta2794) and tested its virulence and immunostimulatory capabilities in a mouse model of infection. Although fully virulent when introduced i.p., the Delta2794 mutant was unable to establish respiratory infection by i.n. inoculation. The inability to colonize the respiratory tract correlated with diminished production of biofilm, as assessed by scanning electron microscopy and in vitro assays. The importance of neuraminidase in biofilm production was further demonstrated by showing that viral neuraminidase inhibitors in clinical use blocked P. aeruginosa biofilm production in vitro as well. The P. aeruginosa neuraminidase has a key role in the initial stages of pulmonary infection by targeting bacterial glycoconjugates and contributing to the formation of biofilm. Inhibiting bacterial neuraminidases could provide a novel mechanism to prevent bacterial pneumonia.

摘要

许多呼吸道病原体,包括流感嗜血杆菌、肺炎链球菌和铜绿假单胞菌,都表达神经氨酸酶,这些酶可从糖缀合物中裂解α2,3连接的唾液酸。由于粘膜表面富含唾液酸,神经氨酸酶被认为通过暴露潜在的细菌受体来修饰上皮细胞。然而,与流感病毒产生的神经氨酸酶不同,细菌神经氨酸酶在发病机制中的作用尚未明确确立。我们通过缺失PA2794神经氨酸酶基因座(Delta2794)构建了铜绿假单胞菌PAO1的突变体,并在小鼠感染模型中测试了其毒力和免疫刺激能力。虽然经腹腔注射时具有完全毒力,但Delta2794突变体通过鼻内接种无法建立呼吸道感染。通过扫描电子显微镜和体外试验评估,无法在呼吸道定植与生物膜产生减少相关。临床使用的病毒神经氨酸酶抑制剂也能在体外阻断铜绿假单胞菌生物膜的产生,这进一步证明了神经氨酸酶在生物膜产生中的重要性。铜绿假单胞菌神经氨酸酶通过靶向细菌糖缀合物并促进生物膜的形成,在肺部感染的初始阶段起关键作用。抑制细菌神经氨酸酶可为预防细菌性肺炎提供一种新机制。

相似文献

1
Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production.
J Clin Invest. 2006 Aug;116(8):2297-2305. doi: 10.1172/JCI27920.
2
The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation.
Infect Immun. 2009 Sep;77(9):3722-30. doi: 10.1128/IAI.00228-09. Epub 2009 Jun 29.
4
Expression of a peroxiredoxin-glutaredoxin by Haemophilus influenzae in biofilms and during human respiratory tract infection.
FEMS Immunol Med Microbiol. 2005 Apr 1;44(1):81-9. doi: 10.1016/j.femsim.2004.12.008.
5
Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa.
Infect Immun. 2007 Aug;75(8):3780-90. doi: 10.1128/IAI.00201-07. Epub 2007 May 25.
8
The role of quorum sensing system in antimicrobial induced ampC expression in Pseudomonas aeruginosa biofilm.
J Basic Microbiol. 2015 May;55(5):671-8. doi: 10.1002/jobm.201300987. Epub 2014 Aug 11.
9
Pseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells.
Infect Immun. 2005 Dec;73(12):8298-305. doi: 10.1128/IAI.73.12.8298-8305.2005.
10
PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1.
J Basic Microbiol. 2014 Jul;54(7):633-43. doi: 10.1002/jobm.201300091. Epub 2013 Aug 29.

引用本文的文献

3
Virulence factors and therapeutic methods of : A review.
Virulence. 2025 Dec;16(1):2467161. doi: 10.1080/21505594.2025.2467161. Epub 2025 Feb 21.
4
The role of sialidases in the pathogenesis of bacterial vaginosis and their use as a promising pharmacological target in bacterial vaginosis.
Front Cell Infect Microbiol. 2024 Mar 1;14:1367233. doi: 10.3389/fcimb.2024.1367233. eCollection 2024.
5
Investigation of bacterial neuraminidase inhibition of xanthones bearing geranyl and prenyl groups from .
Front Chem. 2023 Aug 9;11:1245071. doi: 10.3389/fchem.2023.1245071. eCollection 2023.
7
8
Exploring the biomedical potential of a novel modified glass ionomer cement against the pandrug-resistant oral pathogen SYN-01.
J Oral Microbiol. 2023 Mar 30;15(1):2195741. doi: 10.1080/20002297.2023.2195741. eCollection 2023.
9
10
Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis.
Int J Mol Sci. 2022 Dec 23;24(1):239. doi: 10.3390/ijms24010239.

本文引用的文献

2
Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance.
Mol Microbiol. 2006 Jan;59(1):142-51. doi: 10.1111/j.1365-2958.2005.04941.x.
4
Common beta-lactamases inhibit bacterial biofilm formation.
Mol Microbiol. 2005 Nov;58(4):1012-24. doi: 10.1111/j.1365-2958.2005.04892.x.
5
Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils.
Infect Immun. 2005 Jun;73(6):3693-701. doi: 10.1128/IAI.73.6.3693-3701.2005.
7
Type V protein secretion pathway: the autotransporter story.
Microbiol Mol Biol Rev. 2004 Dec;68(4):692-744. doi: 10.1128/MMBR.68.4.692-744.2004.
8
Self-generated diversity produces "insurance effects" in biofilm communities.
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16630-5. doi: 10.1073/pnas.0407460101. Epub 2004 Nov 16.
9
A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence.
J Biol Chem. 2004 Dec 24;279(52):54881-6. doi: 10.1074/jbc.M411374200. Epub 2004 Oct 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验