Suppr超能文献

利用玉米新遗传图谱对杂交重组自交系进行基因剖析。

Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize.

作者信息

Fu Yan, Wen Tsui-Jung, Ronin Yefim I, Chen Hsin D, Guo Ling, Mester David I, Yang Yongjie, Lee Michael, Korol Abraham B, Ashlock Daniel A, Schnable Patrick S

机构信息

Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa 50011-3467, USA.

出版信息

Genetics. 2006 Nov;174(3):1671-83. doi: 10.1534/genetics.106.060376. Epub 2006 Sep 1.

Abstract

A new genetic map of maize, ISU-IBM Map4, that integrates 2029 existing markers with 1329 new indel polymorphism (IDP) markers has been developed using intermated recombinant inbred lines (IRILs) from the intermated B73xMo17 (IBM) population. The website http://magi.plantgenomics.iastate.edu provides access to IDP primer sequences, sequences from which IDP primers were designed, optimized marker-specific PCR conditions, and polymorphism data for all IDP markers. This new gene-based genetic map will facilitate a wide variety of genetic and genomic research projects, including map-based genome sequencing and gene cloning. The mosaic structures of the genomes of 91 IRILs, an important resource for identifying and mapping QTL and eQTL, were defined. Analyses of segregation data associated with markers genotyped in three B73/Mo17-derived mapping populations (F2, Syn5, and IBM) demonstrate that allele frequencies were significantly altered during the development of the IBM IRILs. The observations that two segregation distortion regions overlap with maize flowering-time QTL suggest that the altered allele frequencies were a consequence of inadvertent selection. Detection of two-locus gamete disequilibrium provides another means to extract functional genomic data from well-characterized plant RILs.

摘要

利用来自杂交B73×Mo17(IBM)群体的杂交重组自交系(IRIL),构建了一个新的玉米遗传图谱ISU-IBM Map4,该图谱整合了2029个现有标记和1329个新的插入缺失多态性(IDP)标记。网站http://magi.plantgenomics.iastate.edu提供了IDP引物序列、设计IDP引物所用的序列、优化的标记特异性PCR条件以及所有IDP标记的多态性数据。这个新的基于基因的遗传图谱将促进各种遗传和基因组研究项目,包括基于图谱的基因组测序和基因克隆。定义了91个IRILs的基因组镶嵌结构,这是鉴定和定位QTL和eQTL的重要资源。对在三个B73/Mo17衍生的作图群体(F2、Syn5和IBM)中进行基因分型的标记相关分离数据的分析表明,在IBM IRILs的发育过程中等位基因频率发生了显著变化。两个分离畸变区域与玉米开花时间QTL重叠的观察结果表明,等位基因频率的改变是无意选择的结果。两位点配子不平衡的检测为从特征明确的植物重组自交系中提取功能基因组数据提供了另一种方法。

相似文献

1
Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize.
Genetics. 2006 Nov;174(3):1671-83. doi: 10.1534/genetics.106.060376. Epub 2006 Sep 1.
2
Linkage mapping of 1454 new maize candidate gene Loci.
Genetics. 2005 Aug;170(4):1957-66. doi: 10.1534/genetics.104.040204. Epub 2005 Jun 3.
3
Development and mapping of SSR markers for maize.
Plant Mol Biol. 2002 Mar-Apr;48(5-6):463-81. doi: 10.1023/a:1014868625533.
7
Exploring the genetic characteristics of two recombinant inbred line populations via high-density SNP markers in maize.
PLoS One. 2012;7(12):e52777. doi: 10.1371/journal.pone.0052777. Epub 2012 Dec 27.
8
Comparison of linkage maps from F2 and three times intermated generations in two populations of European flint maize (Zea mays L.).
Theor Appl Genet. 2006 Sep;113(5):857-66. doi: 10.1007/s00122-006-0343-x. Epub 2006 Jul 11.
9
Expanding the genetic map of maize with the intermated B73 x Mo17 (IBM) population.
Plant Mol Biol. 2002 Mar-Apr;48(5-6):453-61. doi: 10.1023/a:1014893521186.
10
Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.).
Theor Appl Genet. 2007 Aug;115(4):501-8. doi: 10.1007/s00122-007-0583-4. Epub 2007 Jun 21.

引用本文的文献

1
Pleiotropy, epistasis and the genetic architecture of quantitative traits.
Nat Rev Genet. 2024 Sep;25(9):639-657. doi: 10.1038/s41576-024-00711-3. Epub 2024 Apr 2.
2
Validation and Characterization of Maize Multiple Disease Resistance QTL.
G3 (Bethesda). 2019 Sep 4;9(9):2905-2912. doi: 10.1534/g3.119.400195.
3
Use of F2 Bulks in Training Sets for Genomic Prediction of Combining Ability and Hybrid Performance.
G3 (Bethesda). 2019 May 7;9(5):1557-1569. doi: 10.1534/g3.118.200994.
5
Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels.
Mol Biol Evol. 2018 Nov 1;35(11):2762-2772. doi: 10.1093/molbev/msy174.
6
Parent-progeny imputation from pooled samples for cost-efficient genotyping in plant breeding.
PLoS One. 2017 Dec 22;12(12):e0190271. doi: 10.1371/journal.pone.0190271. eCollection 2017.
7
Spatial Mapping and Profiling of Metabolite Distributions during Germination.
Plant Physiol. 2017 Aug;174(4):2532-2548. doi: 10.1104/pp.17.00652. Epub 2017 Jun 20.

本文引用的文献

1
Quality assessment of maize assembled genomic islands (MAGIs) and large-scale experimental verification of predicted genes.
Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12282-7. doi: 10.1073/pnas.0503394102. Epub 2005 Aug 15.
2
Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize.
Nat Genet. 2005 Sep;37(9):997-1002. doi: 10.1038/ng1615. Epub 2005 Jul 31.
3
IRILmap: linkage map distance correction for intermated recombinant inbred lines/advanced recombinant inbred strains.
Bioinformatics. 2005 Aug 15;21(16):3441-2. doi: 10.1093/bioinformatics/bti543. Epub 2005 Jun 16.
4
Gene movement by Helitron transposons contributes to the haplotype variability of maize.
Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):9068-73. doi: 10.1073/pnas.0502923102. Epub 2005 Jun 10.
5
Linkage mapping of 1454 new maize candidate gene Loci.
Genetics. 2005 Aug;170(4):1957-66. doi: 10.1534/genetics.104.040204. Epub 2005 Jun 3.
6
Evaluation of five ab initio gene prediction programs for the discovery of maize genes.
Plant Mol Biol. 2005 Feb;57(3):445-60. doi: 10.1007/s11103-005-0271-1.
7
Linkage disequilibrium and association studies in higher plants: present status and future prospects.
Plant Mol Biol. 2005 Mar;57(4):461-85. doi: 10.1007/s11103-005-0257-z.
8
Evolution of DNA sequence nonhomologies among maize inbreds.
Plant Cell. 2005 Feb;17(2):343-60. doi: 10.1105/tpc.104.025627. Epub 2005 Jan 19.
10
Fast and high precision algorithms for optimization in large-scale genomic problems.
Comput Biol Chem. 2004 Oct;28(4):281-90. doi: 10.1016/j.compbiolchem.2004.08.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验